

An industry leading portfolio of offers delivering sustainable value

More than 75% of our product sales offer superior transparency on the material content, regulatory information and environmental impact of our products:

- RoHS compliance
- REACh substance information
- Industry leading # of PEP's*
- · Circularity instructions

The Green Premium program stands for our commitment to deliver customer valued sustainable performance. It has been upgraded with recognized environmental claims and extended to cover all offers including Products, Services and Solutions.

CO₂ and P&L impact through... Resource Performance

Green Premium brings improved resource efficiency throughout an asset's lifecycle. This includes efficient use of energy and natural resources, along with the minimization of CO_2 emissions.

Cost of ownership optimization through... Circular Performance

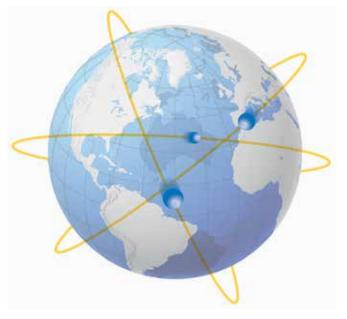
We're helping our customers optimize the total cost of ownership of their assets. To do this, we provide IoT-enabled solutions, as well as upgrade, repair, retrofit, and remanufacture services.

Peace of mind through... Well-being Performance

Green Premium products are RoHS and REACh compliant. We're going beyond regulatory compliance with step-by-step substitution of certain materials and substances from our products.

Improved sales through... Differentiation

Green Premium delivers strong value propositions through third-party labels and services. By collaborating with third-party organizations we can support our customers in meeting their sustainability goals such as green building certifications.


General content

Canalis KTA

Introduction	3
Presentation and description	23
Catalogue numbers and dimensions	49
Design guide	151
Installation guide	195
Recommendations	255
Index	260

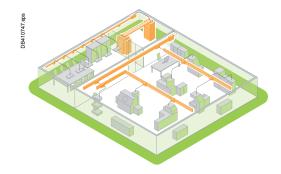
Canalis the ideal offer to match with your needs

58950-9

+70,000

More than 70,000 km of Canalis busbar trunking has been sold around the world.

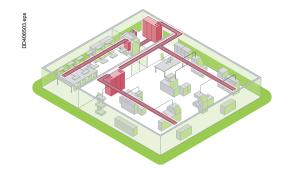
A total coordination with the Schneider Electric system


- Canalis is part of a comprehensive offering of Schneider Electric products designed to operate together.
- It guarantees and enhances the safety of people and equipment, and provides installation continuity of service, upgradeability and simplicity.
- This concept covers all low voltage electrical distribution components.
- The result is an optimised electrical installation with even higher performance through full electrical, mechanical and communication compatibility.
- It is perfectly suited to traditional applications (factories, warehouses, etc.)and to the distribution of electrical power from the incoming transformer on through to all types of loads in offices, commercial premises, laboratories, etc.

- ... more flexibility.
- ... ease of connection with the "plug and play" transformer and switchboard connections.
- ... more assistance with our teams ready to assist you throughout your project.

A Canalis installation for every distribution system

Schneider Electric offers different distribution systems to fit all your operating needs.

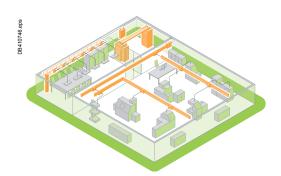

Decentralized distribution

For manufacturing industries

- Mechanical
- Textiles
- Lumber
- Injection moulding
- Electronics
- Pharmaceuticals
- · Livestock, etc.

Decentralized distribution lets you

- Design installations without layout details
- Upgrade without shutting down production
- Get systems up and running sooner thanks to faster installation
- Generate savings depending on the number of loads.


Centralized distribution

For all continuous processes

- Cement plants
- Oil and gas
- Petrochemicals
- Steel
- Paper, etc.

Centralized distribution

- Continuity of service
- Combined distribution of power, control and monitoring circuits
- Supervision, etc.

Combined distribution

Where the advantages of both centralized and decentralized distribution are required.

Commercial and service buildings

- Offices
- Stores
- Hospitals
- · Exhibition halls, etc.

Infrastructures

- Airports
- Telecommunications
- Internet data centres
- Tunnels, etc.

Industrial facilities

- Pharmaceuticals
- Food processing, etc.

The Canalis decentralized distribution concept

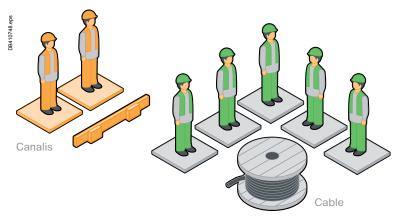
Electrical power available at all points within the installation

Total coordination of the Schneider Electric system provides maximum safety of life and property, continuity of service, upgradeability and ease of installation.

Total coordination is made easy by the tables in the "Design Guide".

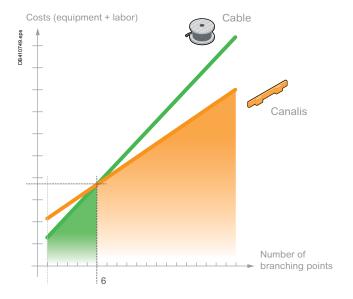
They help you choose the right combination of circuit breakers and busbar trunking.

Product characteristics are verified by calculations and tests carried out in our laboratories.


Exclusive features of the Schneider Electric

A competitive installation

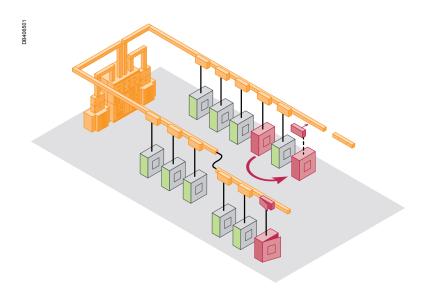
Simplicity, upgradeability, safety and continuity of service and operation.


Savings start as soon as the installation begins. With tap-off points every 3 metres, Canalis busbar trunking reduces installation costs.

Given the low cost of adding new circuits, savings increase as the number of loads increase, a natural consequence of the growth of your business.

Comparative investment

of 400 A electric power system equipment.



The Canalis decentralized distribution concept

Upgradeable during operation

In decentralized distribution, evolving operating requirements and costs are integrated right from the start.

- The addition, relocation or replacement of load equipment can be carried out quickly, without de-energizing the supply trunking or shutting down operation.
- The cost of making such changes is greatly reduced:
- loads are located close to supply points
- tap-off points are always available
- tap-units can be reused or new ones added quickly for load.

Reusable in the event of major changes

When making major modifications to your installation, the existing trunking can be easily dismantled and reused.

Product lifecycle

Power distribution is a major challenge in the construction and refurbishment of commercial, industrial buildings and data centers.

The choice of device is fundamental as it will have an effect on the building's lifecycle. Infrastructures must comply with existing requirements while being flexible, networked and smart. The Canalis concept is undoubtedly the best solution to meet the needs of today and the challenges of tomorrow.

Simple to estimate

Designing Canalis installations is straightforward as there is no need to know the exact location, nor the power rating of the loads to be supplied.

It is therefore very quick to cost the distribution functions. Moreover, Canalis's flexibility means you can invest in existing needs without adversely affecting future expansion.

Practical to recycle

Over the last 20 years, recycling has become a major challenge for industry.

The composition of Canalis ranges quarantees a 95% recycling rate.

But the Canalis offers go
one better... if a site is being
restructured or enlarged, the
products can simply be removed
and reinstalled in their new
environment.

Simple to estimate Practical to recycle Easy to install Simple to maintain

Simple to maintain

- No maintenance is required on the Canalis electrical contacts.
- The clarity of the Canalis architecture simplifies building maintenance and upgrades:
- > enlarging office space,
- > adding check-outs in a supermarket...

Decentralized distribution ensures continuity of service; when associated with a 100% maintained or non-maintained supply, the essential functions are guaranteed:

- > maintaining the cold chain in a hypermarket,
- > lighting system in a car park...

Easy to install

The compact nature of Canalis makes it easy to integrate in all parts of the building.

Since it is based on a decentralized architecture, Canalis can be installed at the same time as the building is being built, which optimizes site construction schedules.

Because of the delayed differentiation linked to the Canalis architecture, new constraints can be taken into account without adding to the installation time.

Controlling costs

The Canalis ranges are factory-tested, which ensures a very high level of quality on site and considerably improves the success of site acceptance tests.

Canalis, in total harmony with the environment

Safety of life and property

With Canalis, no toxic emission in case of fire

The busbar trunking has a low combustible load. Its construction uses very little consumable material and is halogen free. In the event of a fire, the busbar trunking does not emit any gas or toxic smoke.

The busbar trunking helps prevent the propagation of a fire through partition walls and floors.

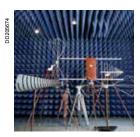
Halogen-sensitive applications

- Public buildings (infrastructures, hospitals, schools, etc.).
- Buildings with evacuation difficulties (high-rises, ships, etc.)
 and service-activity buildings.
- Sensitive processes (production of electronic components, etc.).

Canalis contains no PVCs

When PVCs burn, they produce large amounts of smoke that can be a serious safety hazard.

- Reduced visibility:
- > risk of panic
- > complicates rescue work.
- Smoke toxicity:
- > hydrogen chloride gas (highly toxic)
- > carbon monoxide (danger of asphyxiation).


Example:

Consequences of a fire in a 100 m² office with electrical distribution by cables.

200 kg of cables (i.e. 20 kg of PVC) produces:

- 4400 m³ of smoke.
- 7.5 m3 of hydrochloric acid.
- 3.7 kg of corroded steel.

Health

Canalis reduces the risk of exposure to electromagnetic fields

According to the WHO (World Health Organisation), exposure to electromagnetic fields can be a health hazard starting at levels as low as 0.2 micro-Teslas and could represent a long-term risk of cancer. Some countries have created standards that stipulate limits (e.g. 0.2 µT at 1 metre in Sweden).

All electrical conductors generate magnetic fields proportional to the distance between them. The design of Canalis busbar trunking with tightly spaced conductors in a metal enclosure helps to considerably reduce radiated electromagnetic fields.

The electromagnetic field characteristics of Canalis busbar trunking are well-defined and measurements show that they are far below potentially dangerous levels.

You will find the magnetic induction values of our products on the "Characteristics" pages.

Canalis, in total harmony with the environment

Environment

Canalis is fully recyclable

- Canalis busbar trunking can be reused.
 Canalis busbar trunking is designed for a long service life and can easily be dismantled, cleaned and reused.
- All packaging materials can be recycled (cardboard or recyclable polyethylene film).
- All Canalis products are designed for safe end-of-life recycling. PVC, on the other hand, requires neutralisation of the hydrochloric acid produced using lime and generates dioxins that are extremely toxic.

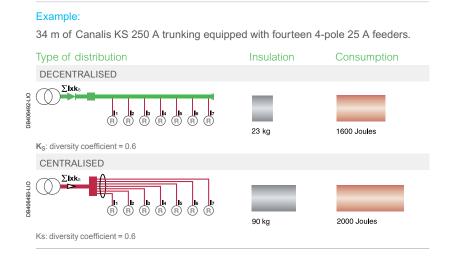
Example:

1 kg of PVC generates 1 kg of waste.

Canalis helps conserve natural resources

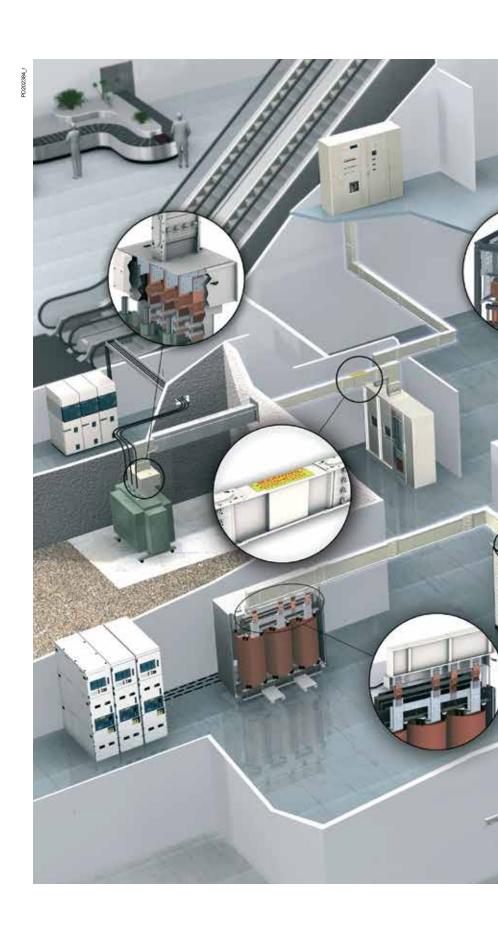
The depletion of raw materials (copper, plastics, etc.) is one of our ongoing concerns. For this reason, we have optimised the used of all materials used to make our busbar trunking.

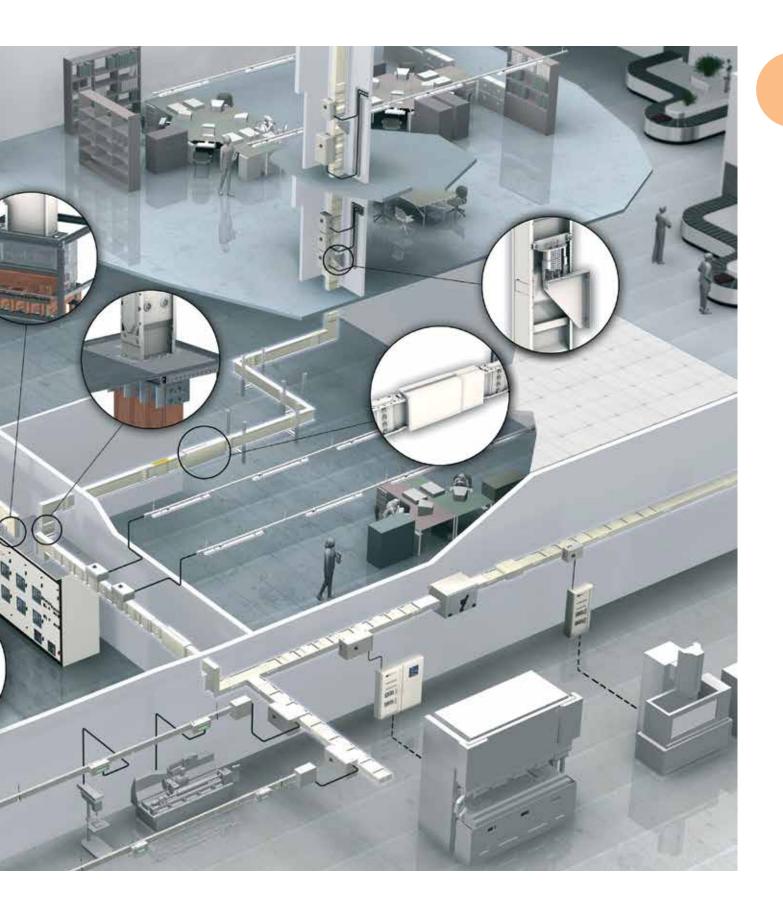
- Reduction of dangerous or polluting materials. We design our products to meet future European directives.
- Reduction in the weight of insulating materials.
- Reduction in the use of plastics for improved fire performance: less energy released during combustion, thereby limiting propagation and facilitating extinction (lower calorific value).


Conservation of natural resources

Canalis reduces your line losses by 20 % Canalis divides your consumption of plastic by a factor of four

The cost of an electrical installation includes the initial investment for the equipment and its installation, the cost of maintenance and the cost of energy losses during operation.


The concept of decentralised distribution is a way to merge all the circuits in one and thus to reduce to the maximum the low cross-section lengths and the weight of insulating materials.



Canalis[®]

From the transport to the distribution...

Canalis is the core of your installation

Canalis KT, a display of advantages

A compact solution

- The compact size of Canalis KT means it takes up very little space in the building:
- > used as a rising main, it takes up only a minimum of space
- > used for horizontal distribution, it fits easily into the building's structure (false floors, false ceilings, service shafts, etc).
- Changes in direction have been designed to optimise the space taken up, contrary to an equivalent installation using cables which requires large bending radii.
- Tap-off units, complete with protective devices, are fitted along the entire length of the busbar trunking thus reducing the floor area taken up by the electrical distribution switchboards.

A simple and economical system

- The design study is easy to perform as it does not require a detailed layout of each load. Equipment choice is predetermined and optimised.
- Installing the busbar trunking requires 2 or 3 people only, for a time equivalent to that for installing cableways. The time normally needed for laying cables is therefore saved.
- Connection to the MV/LV substation is made using a quick fitting joint block.
 The tap-off units can be prepared in the workshop thus reducing on-site time.
 Their connection to the busbar trunking is done in a single plugging-on operation.
- Installing busbar trunking lengths can be done as and when building work progresses, thus optimising on-site work and allowing possible unexpected events to be anticipated in advance.
- It is also important to note that busbar trunking is a factory tested solution, meaning the time needed for inspecting connections is reduced (visual inspection of tightening torque).

Operating continuity

When working on the electrical installation, the busbar trunking provides immediate readability of the electrical circuit thus allowing the appropriate zone to be quickly identified.

Tap-off units can be plugged-on and off without the need for a shutdown; service continuity is thus irreproachable.

Canalis KT, a display of advantages

Certified installation

- Busbar trunking temperature rise and short-circuit withstand are known and independent of the installation.
 Coordination of the Schneider Electric system results in complete control of the electrical network.
- Installation standards UTE C 15-105
 chapter B.6.2 and IEC 60364 chapter
 5.523.6 stipulate that above 4 parallel
 cables, it is preferable to use busbar
 trunking. Paralleling many cables leads
 to uneven distribution of currents and the
 risk of abnormal temperature rise.
- Seismic certification to IEC 60980,
 Richter scale >7 and MSK 64 severity 9.

- The busbar trunking and tap-off units are designed to guarantee the safety of personnel and equipment:
- >plug-on connections to silver-plated copper bars
- > bolted connections with tightening torque guaranteed by torque nuts
- > foolproof system to avoid the risk of assembly errors
- > IP55 certified splash and dust protection
- > sprinkler resistance test in compliance with Volkswagen specifications (valid only for top-mounted units)
- > access to live parts have IPxxD protection (1 mm wire diameter).

Its metal enclosure and high protection degree protect the busbar trunking from all external aggressions (corrosion, rodents, etc).

A large range of tap-off units

Canalis KS tap-off units are fully compatible with Canalis KT:

- They cover all your requirements:
- > Canalis KS tap-off units: 63 to 630 A
- > Canalis KT tap-off units: 400 to 1250 A.
- They offer circuit breaker or fuse protection.

This offer includes tap-off units that can be fitted with the Transparent Ready system:

- They monitor your installation to avoid overloads, thus ensuring service continuity
- They provide metering to allow accurate management of your electrical distribution network (allocation of costs to each consumer).

Canalis is adapted for all types of buildings

Key points

Office and hospital buildings

- Fire barrier
- Halogen free
- Small size
- Operating continuity

Shopping centres, airports and exhibition centres

- Halogen free
- Distribution and metering
- Able to be evolved
- Sprinklers

Car industry and industrial buildings

- Operating continuity
- Able to be evolved
- Low voltage drops
- Network readability

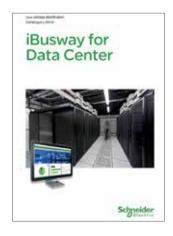
Internet Data Centers

- Operating continuity
- High tap-off density
- Able to be evolved
- Network compactness and readability

Canalis® Solutions

Solution for Data Center

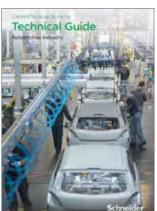
- iBusway for Data Center catalogue: **DEBU028EN**
- iBusway for Data Center brochure: **DEBU027EN**

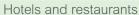

Solution for lighting management

- iBusway for lighting management:
 Canalis DALI technical installation guide
 DEBU032EN
- Brochure iBusway for lighting management: **DESWED112002EN**
- Catalogue iBusway for lighting management: **DEBU035EN**

Application datasheets/Guide

- In cruise ships: DESWED105014EN
- In livestock production buildings: DESWED105010EN
- In logistic centers: DESWED105011EN
- In car parks:DESWED108011EN
- In greenhouses: **DESWED105013EN**
- In garages:
- DESWED106004EN
 In hypermarkets:
 KD0C98CTAHYEN
- In automotive industry: KD0C98CTAAUEN





Canalis, the reference all around the world

Tertiary

	Applications	Name	Lighting and low current		Medium current		High current	Country
			KBA	КВВ	KN	KS	KT	
	Offices							
8		Air France (headquarters)				•		France
P117484-32		Allianz				•	•	Germany
P117		Axa	•			•		France
		Chamber of Commerce					•	Luxembourg
	St. Parmin	Commerz Bank		•		•		Germany
	Jan G. All	Lexel			•	•		Sweden
		Telefónica					•	Spain
		Trade Center	•				•	Spain
	M	Tour du RDC				•	•	Tunisia
		Turning Torso				•		Sweden
		Vodafone			•			New Zealand
	Internet Data Center							
9-32		Banco Commercial Português				•	•	Portugal
38EQI029-32		Colt			•		•	France
38		Digiplex			•	•		Sweden
		IBM	•		•	•	•	Spain, Italy
		MCI-Worldcom	•		•	•	•	Italy, United Kingdom

15				
Hyatt			•	Tunisia
Mc Donald's				France
Soldeo Andorra Hotel		•	•	Spain

Hospitals

Children Clinic			•	•	Sweden
Brussels University Hospital					Belgium
Derby Hospital			•		United Kingdom
Oran Hospital		•		•	Algeria
St Joseph Hospital			•		France
Stockholm Hospital			•		Sweden
Val de Grâce Hospital			•		France
Michalon Hospital			•	•	France
Manussia Hospital			•		Egypt

Supermarkets and hypermarkets

ypermarke	IS						
Alcampo		•		•		•	Spain
Auchan		•	•	•	•	•	World
B&Q			•	•	•		United Kingdom
Carrefour		•	•	•	•	•	World
Соор		•		•	•		Italy
Fnac		•				•	Spain, France
lkea		•		•	•	•	China, Spain, France, Sweden
Mark & Spen	cer	•					Belgium, Spain, United Kingdom
Toys'R Us					•		Spain

Canalis, the reference all around the world

Industry

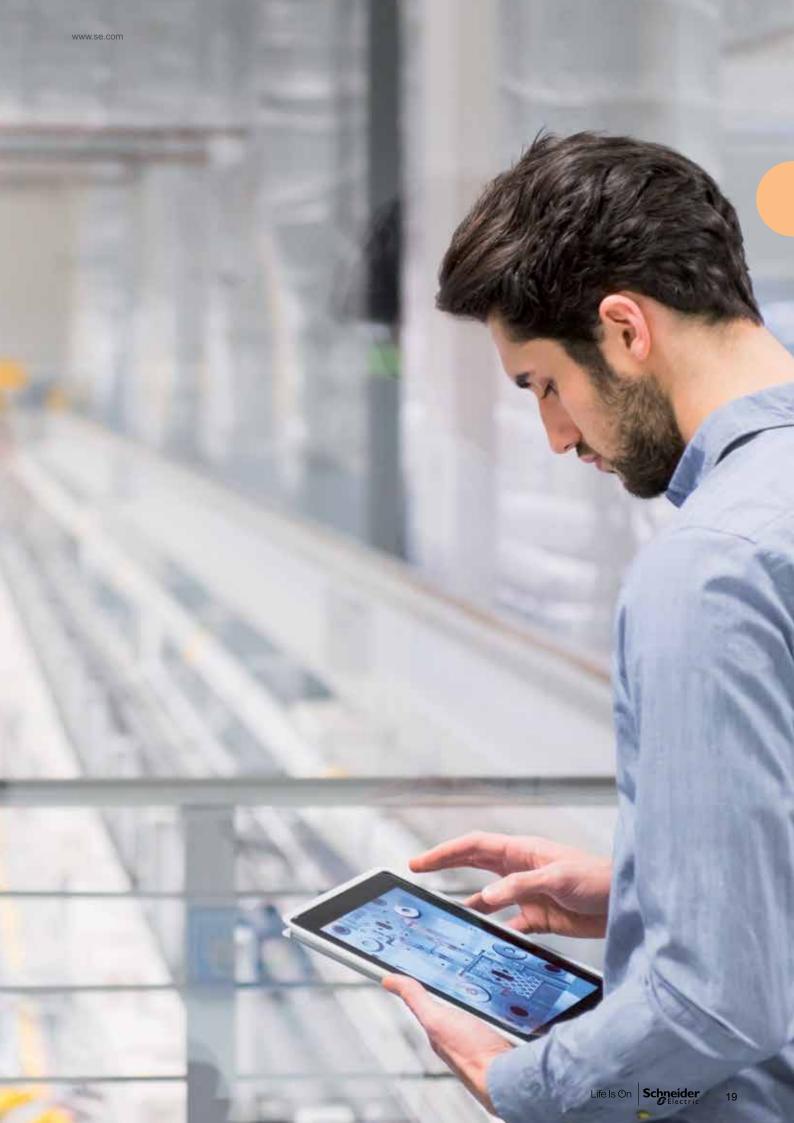
KBA KBB KN KS KT Car industry		Applications	Name	Lighting ar	nd low	Medium cu	rrent	High current	Country
BRW					KBB	KN	KS		
BRW									
BRW		Car industry							
Citroe	7		BMW	•	•	•	•		Italy
Dacial	FB110345-32					<u> </u>		•	
Neco	2						•		
Pelugoot			Dacia	•	•	•	•	•	Romania
Netherlands			Iveco	•		•	•	•	Spain, Italy
Netherlands			Peugeot		•	•	•	•	China, Spain, France
Seat				•	•	•	•	•	
Valéo		7/2	Renault	•	•	•	•	•	Spain, France, Czech Republic
Poland Spain, Germany Poland Spain, Germany Poland Spain, Germany Spain, Ger			Seat						Spain
Other industries Aerospace industry Airbus Airbus Airbus Airbus Airbus			Valéo	•			•	•	China, France, Italy, Poland
Aerospace industry Airbus Ai			Volkswagen		•	•	•		Spain, Germany
Aerospace industry Airbus Ai									
Food-processing industry Coca-Cola		Other industries							
Food-processing industry		Aerospace industry							
Coca-Cola Danone			Airbus	•			•	•	Italy
Coca-Cola Danone						-		-	
Danone		Food-processing industry							
Electricity Legrand Rolex Intel ST Micro-electronique Grundfos Lead industry and water treatment Grundfos France Grundfos Pasquier Pasquier Pasquier Pasquier Prance China Telephony Phillips Nokia Prance Pr			Coca-Cola	•				•	Spain, Italy, Belgium
Livestock production farms and greenhouses Favier henhouse Greenhouse France Netherlands			Danone	•			•	•	World
Favier henhouse Greenhouse Greenhouse France Netherlands			Pasquier			•	•		France
Favier henhouse Greenhouse Greenhouse France Netherlands			-		ļ.		J.		
Favier henhouse Greenhouse Greenhouse France Netherlands		Livestock production farms	and greenhouses						
Ceramic industry Esmalglas ceramic □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □		,		•					France
Ceramic industry Esmalglas ceramic Legrand Legrand Rolex Switzerland Microelectronics Intel ST Micro-electronique Ead industry and water treatment Grundfos Bosch Bosch Phillips Nokia Nokia Spain					•				
Esmalglas ceramic			<u> </u>						11001010100
Esmalglas ceramic		Ceramic industry							
Electricity Legrand Rolex Rolex Switzerland Microelectronics Intel ST Micro-electronique Ead industry and water treatment Grundfos France Bosch Phillips Nokia Electricity France, Turkey Switzerland Switzerland Irelande France France China Netherlands Sweden Textile industry Spain		Octamic industry	Esmalglas ceramic			l.		l.	Snain
Legrand ● France, Turkey Watch-making Rolex Problem Services Intel ST Micro-electronique Intel ST Micro-electronique Industry and water treatment Grundfos France Lead industry and water treatment Grundfos Bosch Phillips Nokia Phillips Nokia Sweden Textile industry Louis Vuitton Spain France, Turkey Switzerland France, Turkey Fr			Lamagias ceramic						Оран
Legrand ● France, Turkey Watch-making Rolex Problem Services Intel ST Micro-electronique Intel ST Micro-electronique Industry and water treatment Grundfos France Lead industry and water treatment Grundfos Bosch Phillips Nokia Phillips Nokia Sweden Textile industry Louis Vuitton Spain France, Turkey Switzerland France, Turkey Fr		Floatrioity							
Watch-making Rolex Switzerland Microelectronics Intel ST Micro-electronique Intel ST Micro-electronique Intel ST Micro-electronique France Lead industry and water treatment Grundfos China Industrial technology Bosch Phillips Nokia Nokia Sweden Textile industry Louis Vuitton Spain		Electricity	Lagrand	اما	ı	ı	ı	r .	Learner Toutier
Microelectronics Intel ST Micro-electronique Industry and water treatment Grundfos Industrial technology Bosch Phillips Phillips Nokia Nokia Spain Spain			Legrand	•					France, Turkey
Microelectronics Intel ST Micro-electronique Industry and water treatment Grundfos Industrial technology Bosch Phillips Phillips Nokia Nokia Spain Spain		Matala malda n							
Microelectronics Intel ST Micro-electronique Lead industry and water treatment Grundfos Industrial technology Bosch Phillips Phillips Nokia Louis Vuitton ST Micro-electronique Irelande France China China China Netherlands Sweden		vvatch-making	B .		l	ı	L	L.	la "
Intel			Rolex	•			•	•	Switzerland
Intel									
Extile industry ST Micro-electronique Industry and water treatment Grundfos Bosch Phillips Nokia Description France France China China Netherlands Sweden Textile industry Louis Vuitton ST Micro-electronique Industry In		Microelectronics			l		ı		
Lead industry and water treatment Grundfos Industrial technology Bosch Phillips Phillips Nokia Nokia Louis Vuitton Spain					•				
Industrial technology Bosch Phillips Phillips Nokia Textile industry Louis Vuitton China China China China Sepain			ST Micro-electronique	•		•	•	•	France
Industrial technology Bosch Phillips Phillips Nokia Textile industry Louis Vuitton China China China China Sepain									
Industrial technology Bosch China Telephony Phillips Phillips Nokia Nokia Textile industry Louis Vuitton Spain		Lead industry and water trea			1		1		
Bosch			Grundfos				•		China
Bosch									
Telephony Phillips Nokia No		Industrial technology							
Phillips ● Netherlands Nokia ● Sweden Textile industry Louis Vuitton ■ ■ ■ Spain			Bosch	•			•		China
Phillips ● Netherlands Nokia ● Sweden Textile industry Louis Vuitton ■ ■ ■ Spain									
Phillips ● Netherlands Nokia ● Sweden Textile industry Louis Vuitton ■ ■ ■ Spain		Telephony							
Nokia Sweden Textile industry Louis Vuitton Spain			Phillips				•		Netherlands
Textile industry Louis Vuitton Spain				•					
Louis Vuitton Spain				I	I	I.	I.		1
Louis Vuitton Spain		Textile industry							
		. o. allo il ladoti y	Louis Vuitton			I •	•		Spain
Delia ■ ■ Islael							-		
			Dona		<u> </u>	17	<u> </u>		101 001

Canalis, the reference all around the world

Infrastructure

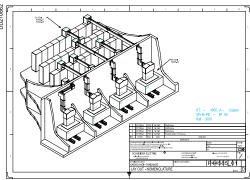
Applications	Name	Lighting current	and low	Medium	current	High current	Country
		KBA	KBB	KN	KS	KT	
Airports							
	Paris Airport	•	•	•	•	•	France
	Cairo Airport				•		Egypt
1,000	Heathrow Airport			•	•	•	United Kingdom
1987	Hong-Kong Airport					•	China
	Landvetter Airport				•		Sweden
TO ME THE REST	Arlanda	•			•	•	Sweden
A STATE OF THE PARTY OF THE PAR	Satelite Barajas					•	Spain

Chantier de l'Atlantique		•	•	France
Meyerwerft		•	•	Germany


Undergrounds

Guanghzou Underground	•				China
London Underground		•			United Kingdom
Madrid Underground	•			•	Spain
Singapore Underground				•	Singapore

Other infrastructures


,5						
	Alexandria Library			•	•	Egypt
	Centre international d'exposition de Suzhou	•		•		China
	CERN			•	•	Switzerland
	Stade de France			•	•	France

Canalis tools and services

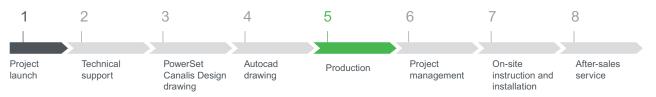
Working together on your solution

Our teams are available to provide customers with technical assistance throughout the installation of their projects.

Design of electrical distribution architectures:

- design of decentralized transport and distribution systems
- technical and financial optimization of busbar trunking design projects
- transformer/switchboard link
- installation coordination and discrimination.

Full installation drawings*:


- 3D AutoCAD drawings with corresponding parts lists
- 2D drawing with dimensions
- detailed connection drawings

*All AutoCADs are available on Traceparts.com BIM Models: are available on se.com

Site supervision and commissioning assistance.

Training for designers and contractors.

Canalis Busway "Total Solution":

PowerSet Canalis Design

PowerSet Canalis Design gives you all the help you need

"Schneider Electric offers comprehensive design and costing software."

The **PowerSet Canalis Design** software by Schneider Electric was developed to help you design and cost Canalis busbar trunking runs.

PowerSet Canalis Design, Your comprehensive tool

The PowerSet Canalis Design software allows you to quickly design the best layout for your project. It helps you:

- Choose the required material
- Define a list of catalogue numbers and their exact quantities
- Generate a comprehensive quote that includes material and labour.

There are 2 options:

- Linear metre costing.
- · Graphical costing.

Design guide.

Enter Canalis run characteristics

Linear meter costing

Switchboard access estimation of material and labour costs.

Graphical costing

Definition of catalogue numbers

Breakdown of the run by product function.

Quote

Presentation and description

Introduction	3
Presentation	24
Panorama of Canalis range Lighting distribution Power distribution	24 24 26
Canalis KTA from 800 to 5000 A For horizontal transport and distribution For distribution to different levels	28 28 30
Tap-off units from 25 to 1250 A	31
Description	32
General	32
Run sections	34
Other run sections Disconnectors and run protective devices	35
Change of direction sections	36
Connection sections	37
Connection accessories	42
Supports and fixings	44
Tap-off units	45
Plug-on tap-off units for circuit breakers	46
Plug-on tap-off units for fuses	47
Fixed tap-off units for circuit breakers	48
Catalogue numbers and dimensions Design guide Installation guide Recommendations Index	49 151 195 255 260

Panorama of Canalis range

Lighting distribution

Canalis KTA

Low & medium Power Solutions

Busbar trunking for lighting and low power distribution from 25 to 40 A IP55

Rated service current	Permissible rated peak current	Rated insulation voltage	Color
Inc	lpk	Ui	
KBA			
25 A 40 A	4.4 kA 9.6 kA	690 V	Pre-lacquered white (RAL9003)
KBB			
25 A 40 A	4.4 kA 9.6 kA	690 V	Pre-lacquered white (RAL9003)

Power distribution from 40 to 160 A IP55

Rated service current	Permissible rated peak current	Rated insulation voltage	Color
Inc	lpk	Ui	
KN			
40 A 63 A 100 A 160 A	6 kA 11 kA 14 KA 20 kA	500 V	Pre-lacquered white (RAL9001)

Rated ser	rvice	Permissible rated peak current	Rated insulation voltage	Color
Inc		lpk	Ui	
KS				
Aluminium:	Copper:		690 V	Pre-lacquered
100 A		15.7 kA		white (RAL9001)
160 A	160 A	22 kA		
250 A	250 A	28 kA		
400 A	400 A	49.2 kA		
500 A		55 kA		
630 A	630 A	67.5 kA		
800 A	800 A	78.7 kA		
1000 A		78.7 kA		

Line components		Branching points			Accessories
Length of components	Number of conductors	Center to center distance		Protection type	
2 m and 3 m	2 or 4 + PE	0.5 m, 1 m on 1 side	L + N + PE or 3L + N + PE (10/16 A) pre-cabled or to be cabled, with phase selection or fixed polarity, with lighting control	With fuses or without protection	> Flexible components > Fixing devices with quick adjustment > Communication bus (DALI, ASI) > Cable ducts
2 m and 3 m	Single circuit 2 or 4 + PE Dual circuit 2 + 2 + PE 2 + 4 + PE 4 + 4 + PE	0.5 m or 1 m on 1 or 2 sides	L+N+PE or 3L+N+PE (10/16 A) pre-cabled or to be cabled, with phase selection or fixed polarity, with lighting control	With fuses or without protection	> Flexible components > Fixing devices with quick adjustment > Communication bus (DALI, ASI) > Cable ducts

Line components		Branching points			Accessories
Length of components		Center to center distance		Protection type	
2 m and 3 m	4 + PE	0.5 m, 1 m on 1 side	16 A to 63 A (plug-in)	circuit breakers,	> Flexible components > Fixing devices with quick adjustment > Remote control bus > Cable ducts > Installation accessories

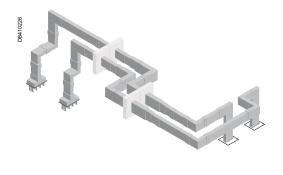
Line components		Branching points			Accessories
Length of components	Number of conductors	Center to center distance		Protection type	
3 m, 5 m and additional or customized components	4 + PE	0.5 m or 1 m on each side for horizontal version, and on one side for vertical version	16 A to 400 A (plug-in)		> Riser ducting offer > Fixing devices with quick adjustment > Cable ducts > Installation accessories > Fire barriers

Panorama of Canalis range

Power distribution

Canalis KTA

High Power Solutions



Power transmission and distribution from 800 to 6300 A IP55

Rated service current		Permissible rated peak current		Rated insulation voltage	Color
Inc		lpk		Ui	
KT*					
Aluminium:	Copper:	Standard:	Optional:	1000 V	Pre-lacquered
800 A	-	64 kA	73 kA		white (RAL9001)
1000 A	1000 A	110 kA	143 kA		
1250 A	1350 A	110 kA	143 kA		
1600 A	1600 A	143 kA	187 kA		
2000 A	2000 A	154 kA	242 kA		
2500 A	2500 A	176 kA	248 kA		
3200 A	3200 A	189 kA	248 kA		
4000 A	4000 A	198 kA	264 kA		
5000 A	5000 A	209 kA	264 kA		
	6300 A	209 kA	264 kA		

^{*} Canalis KT range is available on se.com or catalogue: KTA: ref. DEBU021EN / KTC: ref. DEBU024EN

Power transmission for outdoor and harsh environment from 800 to 6300 A **IP68**

Rated service current		Permissible rated peak current		Color
Inc	lpk	lpk		
KR*				
	Aluminium:	Copper:	1000 V	Gray (RAL7030)
800 A	56 kA	-		
1000 A	56 kA	80 kA		
1250 A	117 kA	-		
1350 A	-	80 kA		
1600 A	117 kA	143 kA		
2000 A	143 kA	176 kA		
2500 A	176 kA	176 kA		
3200 A	220 kA	220 kA		
4000 A	220 kA	220 kA		
5000 A	220 kA	275 kA		
6300 A	-	275 kA		

^{*} Canalis KR range is available on se.com or catalogue ref. DEBU031EN

Line components		Branching points			Accessories
Length of components	Number of conductors	Center to center distance		Protection type	
2 m and 4 m	3P + PE 3P + N + PE 3P + N + PER	0.5 m or 1 m	25 A to 630 A (plug-in) 400 A to 1250 A (bolt-on)	Units for circuit breakers (modular, Compact NSX), fuses, sockets	> Power supply ends > Direction change angles and T-pieces > Fixing devices and fuses

Line components Branching points		S		Accessories	
Length of components	Number of conductors	Center to center distance		Protection type	
Up to 3 m	3L + N or 3L + PE or 3L + PEN 3L + PEN 3L + N + PE	-	-	-	> Power supply ends > Direction change angles and T-pieces > Fixing devices > Fire resistant elements

Canalis KTA from 800 to 5000 A

For horizontal transport and distribution

Canalis KTA

Run sections

- Rating: 800 to 5000 A. Transport sections:

- ☐ fixed lengths: 2 and 4 meters☐ non-standard lengths: 0.5 and 3 meters☐
- Distribution sections:
- □ fixed lengths: 2 and 4 meters.

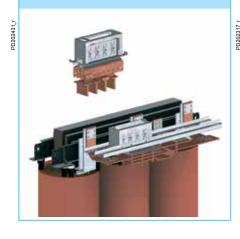
Tap-off units

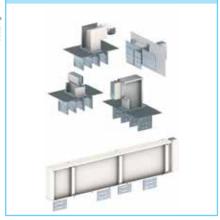
- Plug-in tap-off units:
- □ protection by 25 to 630 A fuses
- □ protection by 100 to 630 A Compact NSX circuit breakers.
- Fixed tap-off units:
- □ protection by 400 to 1250 A Compact NS and NSX circuit breakers
- protection by 400 to 1000 A fuses.

Change-of-direction sections

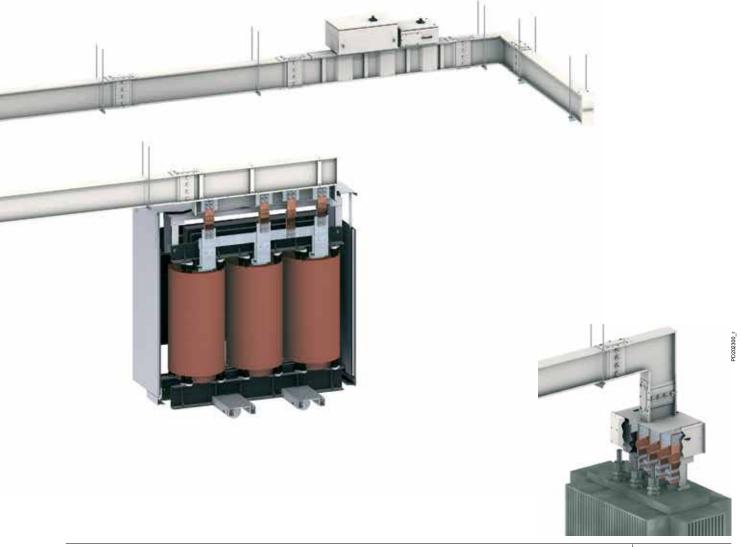
- Change-of-direction sections adapt to all busbar trunking requirements.
- There are both fixed and made-tomeasure lengths.

Interface connections


- Pre-fabricated interfaces connections can be incorporated into:
- □ Prisma P and Okken switchboards
 □ France Transfo dry-type transformers.


Universal supply connections

■ Supply connections allow the busbar trunking to be connected to the switchboard's busbar or to the transformer.


Horizontal fixing supports

- There are two types of support for installing the busbar trunking horizontally.
 One type of fixing: to fix the busbar trunking to its support.

Canalis KTA from 800 to 5000 A

For distribution to different levels Rising mains

Canalis KTA

Run sections

- Rating: 800 to 5000 A.
- Distribution sections, fixed or made to measure.
- Transport sections for going through floor slabs, made to measure 0.5 to 3 meter lengths.

Vertical fixing support

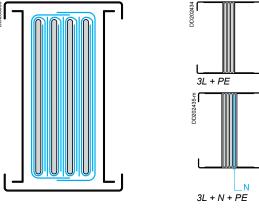
- For installing the busbar trunking vertically, they
- □ height and depth adjustment □ load sharing
- □ absorption of expansions, vibrations, etc.
- They can be fixed either to the floor, the wall or to a bracket.

Tap-off units

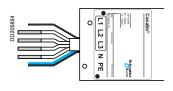
- Plug-in tap-off units:
- □ protection by 25 to 630 A fuses
 □ protection by 100 to 630 A Compact NSX circuit breakers
- Fixed tap-off units:
- □ protection by 400 to 1250 A Compact NS and NSX circuit breakers
- □ protection by 400 to 1000 A fuses

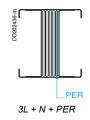
Tap-off units from 25 to 1250 A

Rating (A)	Type of protection			
	Modular switchgear	Compact NS and NSX	Fuses	Compact NSX with
Plug-on tap-off u	nite			measurement and metering
25 to 100		For Compact NSX100 circuit breaker	25/50 A for NF/DIN fuses 32 A for BS fuses 53 A for DIN fuses 100 A for NF/DIN fuses 80 A for BS fuses	
160	For NG125/160 circuit breaker	For Compact NSX160 circuit breaker	160 A for NF/DIN/BS fuses	
250 to 400		For Compact NSX250 circuit breaker For Compact NSX400 circuit breaker	250/400 A for NF/DIN fuses	Fitted with DIN rail for Powerlogic PM810 For Compact NSX250 circuit breaker For Compact NSX400 circuit breaker
630		For Compact NSX630 circuit breaker	630 A for NF/DIN fuses	To Compact No. (100 circuit broade)
Fixed tap-off unit	s			
400 and 630 800, 1000 and 1250		For Compact NSX400 and NSX630 circuit breakers	400 to 630 A for DIN fuses ⁽¹⁾	
		For Compact NS800, NS1000 and NS1250 ⁽¹⁾ circuit breakers	800 to 1000 A for DIN fuses ⁽¹⁾	
			250 and fuses (from 400 to 1000 A	A) in IP31 only.


General

Canalis KTA


The Canalis KT busbar trunking is intended for high power distribution and transport in industrial, commercial and tertiary buildings.


Assembly of prefabricated sections that adapt to all run configurations.

Run sections

The conductors are sandwiched together inside the metal casing.

- 9 ratings are available, from 800 to 5000 A.
- 4 aluminium live conductors with identical cross-sections (3L + N + PE version).
- Conductors insulated using polyester film, class B 130°C, halogen free.
- Standard busbar trunking is IP55.
- Insulation voltage: 1000 Volts.
- Available polarities: 3L + PE, 3L + N + PE, 3L + N + PER (reinforced PE)

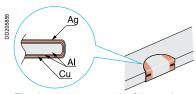
The KT busbar trunking is of compact design and can be installed edgewise, flat or vertically.

This design, allows the busbar trunking to be installed through a floor slab or fire barrier wall.

As standard, the Canalis KT busbar trunking acts as a fire barrier in accordance with IEC 61439-6.

The compact technology allows Canalis KT busbar trunking to withstand high short-circuit currents and is suitable for most electricity distribution applications.

The RAL 9001 pre-lacquered galvanized steel casing provides protection and mechanical fixing of the conductors.

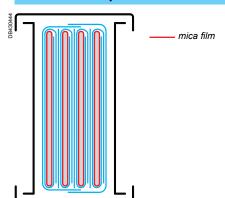

Further, it is used as the PE protective conductor (in accordance with NFC 15100 and IEC 60364).

In its reinforced version 3L + N + PER, the busbar trunking is fitted with an additional internal conductor with a cross-section equal to half that of the phase conductor.

A reinforced version can be supplied on demand. This version has lateral reinforcement (see page "Characteristics").

The Canalis KT busbar trunking is suitable for applications containing harmonics by taking into account the appropriate derating factor. See "Harmonic currents" in the Design guide.

Tap-off contact

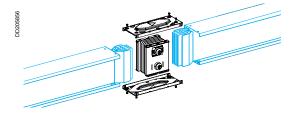

The electrical contact pads of the sections are made from bonded bimetallic aluminium/copper.

The KS plug-on tap-off units are connected to the busbar trunking whilst live (off-load) via spring jaw connections.

Contact zone coating:

- silver-plated copper at jaw contact points
- \blacksquare aluminium / silver-plated copper bimetallic saddle welded to the live conductors.

Fire rated components



FT, FC and FP components are suitable for applications requiring continuity of service in case of fire. These components have the same cross section as the standard Canalis KT ones and are fully compatible and connectable.

These components comply with IEC 60331-1 and IEC 60331-31 for a duration of 480 minutes at 830°C.

To achieve this performance, the conductors are wrapped in a mica film before being isolated by a polyster film. The plastic parts of the joint blocks are also reinforced to withstand higher temperatures.

Joint block

The junction between sections is made using a joint block.

The joint block provides the following:

■ electrical junction between live conductors and between PE protective conductors, mechanical link between the two sections.

It provides simultaneous continuity between all conductors.

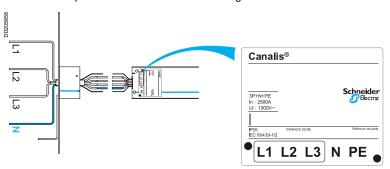
It is tightened using torque bolt(s) (1 to 4 depending on the rating) with snap-off heads.

The nut head snaps-off, freeing a red washer, when the correct tightening torque is reached.

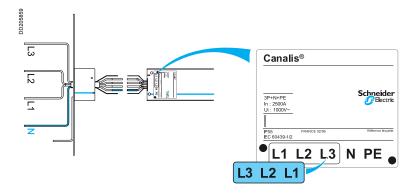
This operation is checked visually:

- if the red washer is absent: it has been tightened
- if the red washer is visible: it has not been tightened.

This device guarantees the necessary contact pressure between live conductors and is operator independent.


For dismantling or maintenance operations, the nut has a second head. The tightening torque is 6 daN.m.

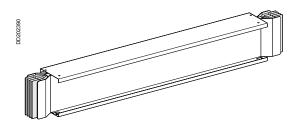
All sections (apart from ER and EL feed units) are supplied with their joint block, delivered in a separate parcel.


If the run has a feed unit (ER or EL) at each end, an additional joint block must be ordered.

Phase order

The standard phase order for the busbar trunking is denoted N321.

However, this order can be changed to N123. A label showing the phase order "N123" is supplied with each element to indicate the change.

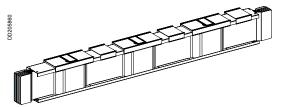

Run sections

Canalis KTA

Straight sections

Transport sections - Type ETTransport the current without tap-off points.

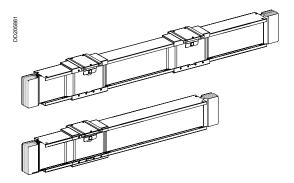
Available in 2 and 4 metre fixed lengths or made to measure from 0.50 to 3 metres.



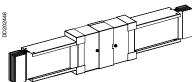
Sections with tap-off points for plug-on tap-off units -Type ED ED run sections are for current distribution.

They use 25 to 630 A KS tap-off units.

These tap-off units can be plugged-on whilst live, but off-load.


Available in fixed 2 and 4 metre lengths with 3 tap-off points on one side or made to measure from 2.5 to 3.5 metre.

Sections with tap-off points for fixed tap-off units - Type EB EB run sections are for current distribution.


They use specific KT 400 to 1250 A tap-off units.

These tap-off units can only be fitted / removed when the run is not energised. Available in a 2 metre fixed length with one tap-off point or a 4 metre fixed length with 2 tap-off points.

Other run sections Disconnectors and run protective devices

Other run sections

Expansion section - Type DB

It controls and absorbs the expansion of Canalis runs and must be used on runs over 30 metres and each time the busbar trunking passes through a building expansion joint.

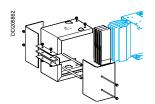
Refer to the installation guide.

Available in a 1 metre length, it can be fitted vertically or horizontally. At its centre it has flexible conductor joints and a sliding case able to absorb the relative movements of each part of the section.

Transposition sections - Types TN, TP

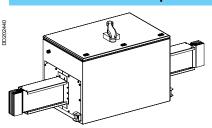
Used when the phase order of the switchboard is different to that of the transformer.

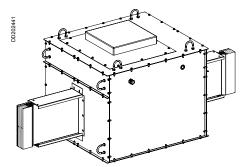
Available in a 1 metre length and is the same physical size as a transport section.


The TN version transposes the neutral.

■ The TP type transposes the phases.

Additional joint block - Type YA


If the run has a feed unit (supplied without a joint block) at each end, an additional joint block must be ordered.


Each joint block is supplied with the necessary covers, nuts and bolts.

Run end cover - Type FA

The end cover protects and insulates the conductor ends and is fitted to the last section.

Disconnectors and run protective devices

Fitted between 2 flat or edgewise sections, they isolate or protect a busbar trunking part run.

Each assembly is supplied fitted with a 3 or 4-pole device complete with rotary handle.

Supplied with:

- an auxiliary connection terminal
- lifting rings
- upstream and downstream terminal shields.

Colour: white RAL 9001, 100 % polyester paint on galvanized sheet steel. Refer to manufacturer's data for switchgear characteristics

Fitted with a rotary handle, the tap-off unit can only be opened once the device has been switched off.

Run disconnector tap-off units - Type SL

Type SL for:

- Compact NS1000 to 1600 A type NA fixed isolators:
- □ unhingeable door
- □ 3-point closing (possibility of locking with key lock, not supplied)
 Interpact INV isolator, 2000 to 2500 A:
- □ unhingeable door
- □ 3-point closing (possibility of locking with key lock, not supplied)
- Masterpact NW3200 A type HA fixed isolator supplied with:
- □ transparent protection cover
- □ adaptation kit for Ronis lock + 1 Ronis lock
- □ complete Harting plug, not cabled.

Run protection tap-off units - Type PL Type PL for:

- Compact NS1000 to 1600 A type N fixed circuit-breakers:
- □ unhingeable door
- □ 3-point closing (possibility of locking with key lock, not supplied).

For circuit-breakers greater than 1600 A, consult the sales office.

Change of direction sections

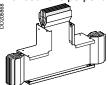
Canalis KTA

Simple changes of direction

Elbows - Types LP and LCTo go up or down, to turn right or left:

■ type LP, flat elbow available in fixed or made-to-measure lengths

■ type LP•C, flat made-to-measure angled elbow

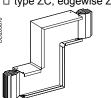

■ type LC, edgewise elbow available in fixed or made-to-measure lengths

■ type LC•C, edgewise made-to-measure angled elbow.

Edgewise T junctions - Type TC To feed runs perpendicular to the main run.

Changes of direction

Zeds - Types ZP, ZC and CP

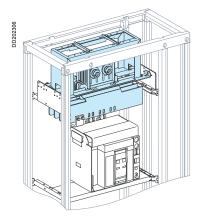

3-branch made-to-measure:

■ flat or edgewise, to move the run axis upwards, downwards, to the right or to the left without having to bend the busbar trunking:

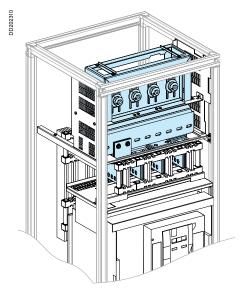
□ type ZP, flat Zed

□ type ZC, edgewise Zed

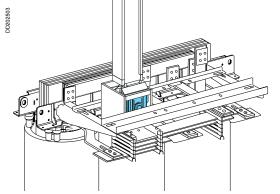
- edgewise / flat, to provide the busbar trunking with a bend:
- ☐ Type CP, edgewise and/or flat Zed.


Connection sections

To connect the KTA busbar trunking to different terminals or to transformer, switchboard, generator set, etc. busbars. Canalis offers high performance connection sections which meet all requirements.

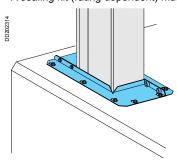

These sections provide installation flexibility combined with quick and simple assembly.

Further, the connections are made using torque bolts which provide both ease of installation (use of a standard spanner for tightening to 60 N.m) and a visual check before energising.


Connections via interface to Prisma P, Okken and Trihal

Prisma P switchboard.

Okken switchboard.



Direct connection to Trihal transformers and Prisma P & Okken switchboards. Supplied factory or panelbuilder assembled and tested to IEC 61439-1 and IEC 61439-6.

Quick and simple connection of the busbar trunking to the interface. Reduced size.

Joint block integrated into the interface.

A sealing kit (rating dependent) must be ordered.

Sealing kit

Prisma P and Okken switchboards

For fixed or draw-out incoming device, front or rear connection:

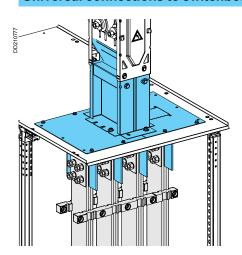
- Masterpact NW08 to NW40 or NT06 to NT16 circuit-breaker
- Compact NS630b to NS1600 circuit-breaker.

Possibility of switching the phases around.

France Transfo Trihal dry type transformers

For naturally ventilated or force ventilated transformers. Protection degree:

- IP00
- IP31.

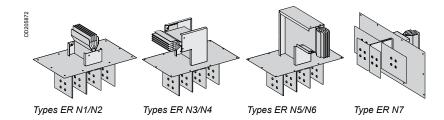

Secondary voltage: 410 V.

±15 mm adjustment in the 3 axes.

Connection sections

Canalis KTA

Universal connections to switchboards and oil immersed transformers

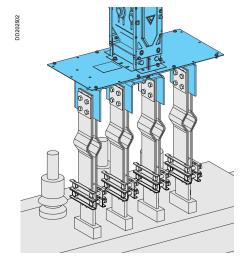


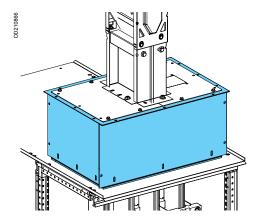
Feed units - Type ERThey allow the busbar trunking to be connected to a switchboard's busbar, or to the terminals of an oil immersed transformer, generator set, etc.

They come complete with a mounting plate fitted:
■ either directly to the roof of the switchboard

- or via the intermediary of a protective cover.

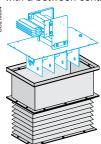
Vertical or horizontal incoming busbar trunking.



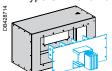

Connection:

- either directly to the busbar
- or by flexible bars and connection plates
- or by braids■ or by cables.

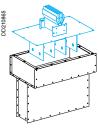
■ If the run has a feed unit at each end, an additional joint block must be ordered.

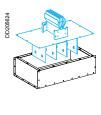


Protective covers - Types CS, CR, BC Protects the external part of the connection.


■ Type CS

Height adaptable flexible protective cover adaptable for ER N1 to N6 feed units with a between centres distance of 115 mm.

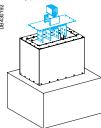



For a vertical incomer - Types CR1 to CR3
Made-to-measure rigid protective cover for ER N1 to N7 feed units.
They are height adjustable by ± 50 mm.

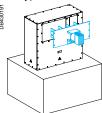
■ Type CR1 for a horizontal incomer.

■ Types CR2 and CR3 for a vertical incomer.

■ Types CR7 and CR8


Protective covers for Minera oil immersed transformers.

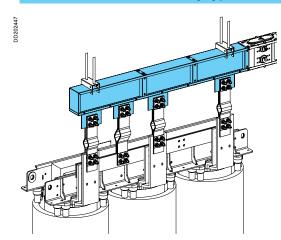
Only for ER N1 to N6 feed units with a between centres distance of 150 or 170 mm depending on the rating.


Fit directly onto the BT series transformer tanks.

Never use with HV porcelaine bushings.

☐ Type CR8 for a vertical incomer.

☐ Type CR7 for a horizontal incomer.

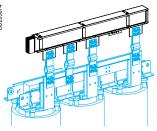

□ Type BC

Protective cover for direct cable connection to ER N1 to N6 feed units with a between centres distance of 115 mm.

Connection sections

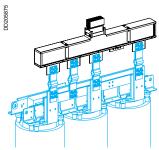
Canalis KTA

Universal connections to dry type transformers



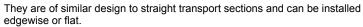
Feed units - Type EL

For dry type transformers with the neutral between the phases. They allow optimum connection to the busbar trunking.


The junction with the busbar trunking is achieved:

either from the side

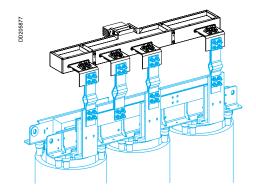
Type EL N1/N2.


or from the centre.

390000

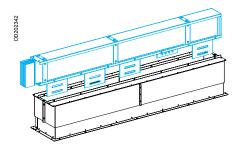
Type EL N3/N4.

Type EL N5.

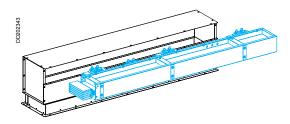


If installed flat, a set of angle brackets can be ordered.

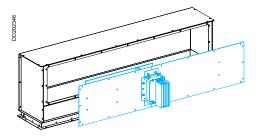
The following must be specified at the time of order:


- phase order
- lacktriangle distance between phases (a ±20 mm lateral adjustment can be made use of on site).

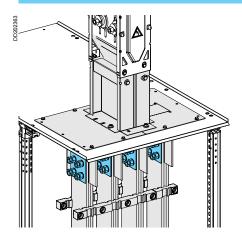
The link between the transformer terminals and the connection section is either by flexible bar connection plates or by braids.



Protective covers - Type CR4 to CR6
These protect the connections with an IP31 casing when connecting to a transformer.
They are height adjustable by ±50 mm.


■ Type CR4
Protective cover for EL N1 to N4 feed units.
Edgewise assembly.

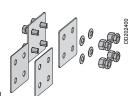
■ Type CR5
Protective cover for EL N1 to N4 feed units.
Flat assembly.


■ Type CR6
Protective cover for EL N5 feed unit.
Edgewise assembly.

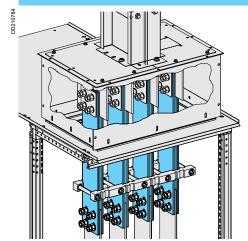
Connection accessories

Canalis KTA

Accessories for direct connection to the switchboard


The conductors of ER N1 to N6 feed units are connected directly to the switchboard busbars.

YB2 copper spacers are available to compensate differences in thickness between the switchboard bars (10 mm) and the connection part (6 mm).


Make-up of kit:

- 8 x 2 mm thick copper spacers
- 16 off M12 x 60 mm bolts, class 8.8
- 16 contact washers
- 16 torque nuts
- 8 steel spacer plates.

Order a set per feed unit whatever the rating.

Switchboard connection accessories using connection plates

The conductors of ER N1 to N6 feed units are connected via connection plates to the switchboard busbars.

The YC are flexible bars made up of 5 copper sheets of 1 x 100/120 mm or of 5 bimetal aluminium/copper sheets 1.4 x 100/120 mm.

The number of connection plates needed is proportional to the busbar trunking rating.

There are 2 types:

■ YC1, uninsulated bar, made-to-measure length of 250 to 600 mm with 4 oblong holes at the ER unit end.

The holes at the opposite side are made to measure to match with the switchboard connections.

202401	00	
8	00	

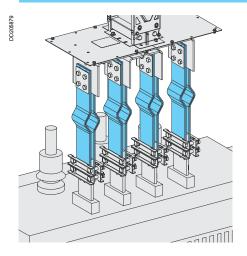
■ YC5, insulated 600 or 1000 mm long flexible bar, stripped at one end and with 4 oblong holes.

The length of the holes at the switchboard side are to be adapted on-site.

Nuts and bolts

The connection plates are fixed to the feed unit using the YB3 nut and bolt kit, made up of:

- 16 off M12 x 60 mm bolts, class 8.8
- 16 contact washers
- 16 torque nuts
- 8 steel spacer plates.



YS1 clamps enable high short-circuit current levels to be withstood; only for bars with a 115 mm spacing.

Insulation See page 43.

Transformer connections - Types YC, YT

The feed unit conductors are connected to the transformer bars via connection plates or braids:

- the YC are flexible bars made up of 5 copper sheets 1 x 100/120 mm or of 5 bimetal aluminium/copper sheets 1.4 x 100/120 mm.
- braids, YT type, are copper braids with a 600 mm² cross-section.

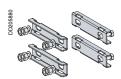
The number of connection plates needed is proportional to the busbar trunking rating.

Connection plates

The YC3 is an uninsulated bar with an expansion kink; it is 250 to 600 mm long and has 4 holes at the ER unit end.

The holes at the opposite side are made-to-measure to match with the transformer connections.

They can be fitted to the transformer side:


- either using bar clamps (no drilling),
- or drilled and bolted (to be carried out on site).

YS2 and YS3 bar clamps enable connection without the need to drill the connection plates.

They allow height adjustment.

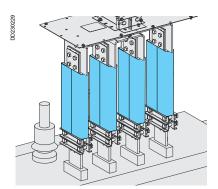
- Type YS2, bar clamps for 100 mm transformer connection terminals.
- Type YS3, bar clamps for 120 mm transformer connection terminals. Make-up of kit: 1 set of 8 parts.

Braids

Type YT, 400 mm long insulated braid with 4 holes at each end.

The connection plates and braids are fixed to the feed unit using the YB4 nut and bolt kit, made up of:

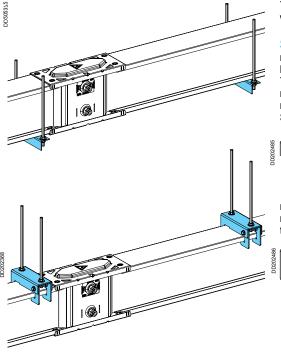
- 16 off M12 x 80 mm bolts, class 8.8
- 16 contact washers
- 16 torque nuts
- 8 steel spacer plates.


Insulation

The YF conduit allows the various conductors of a connection performed with braids or with bare copper foils to be insulated.

Installation is performed after complete assembly of the connection, with scratch fastening for easier setup.

The insulating conduit is formed of a 2-metre plastic duct that can be cut to length as needed.



Supports and fixings

Canalis KTA

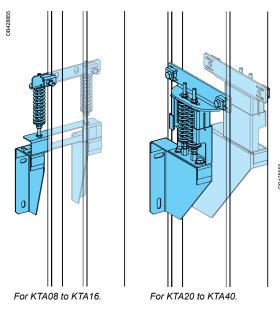
Horizontal supports

The ZA types allow the busbar trunking to be fixed and adjusted along its length, as well as absorbing its movements.

Supports for horizontal sections

- Type ZA1, to support edgewise busbar trunking only, consists of a steel angle bracket and 2 x 2 metre threaded M10 rods.
- The maximum distance between supports is:
- □ 3 metres for edgewise busbar trunking
- □ 2 metres for flat busbar trunking.
- See installation precautions.

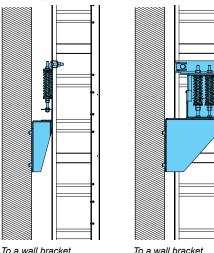
- Type ZA4, to support the busbar trunking from the top.
- These supports are needed to fix edgewise EL N1 to N4 feed units for dry type transformers (rods not supplied).



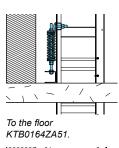
The ZA3 keeps the busbar trunking in place on its support, without blocking it, in order to allow expansion movements.

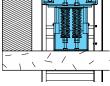
Vertical supports

The ZA5 is for supporting vertical sections.

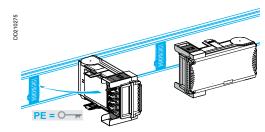

They fix sections of a vertical run to the building's structure.

This type of fixing support has the following advantages:


- assembly:
- □ to a wall
- □ to a wall bracket
- □ to the floor

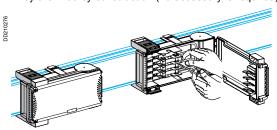

KTB0164ZA5.

- height and depth adjustment
- spring adjustment to ensure distribution of the load at each floor
- avoids the transmission of building forces to the busbar trunking (expansion and



To the floor KTB0204ZA51 to KTB0404ZA51.

Tap-off units


The tap-off units are used to instantly connect loads or secondary runs, and comply with installation standards and regulations (IEC 60364), whatever the earthing system (TT, TNS, TNC or IT).

When off-load, they can be plugged-on and off and be operated whilst live. Plugging-on and plugging-off automatically opens and closes the tap-off point.

No live part is accessible with the door open. The protection degree is IPXXB (finger protection).

They are IP55 by construction (no accessory is required).

Safety and operation

Fuse and modular switchgear tap-off units (AC20) are isolated as soon as the tapoff unit door is opened.

Tap-off unit disconnection by opening or closing the cover should be carried out only if the downstreamload is de-energised.

For circuit breaker tap-off units, there are safety mechanisms to prevent:

- the tap-off unit being plugged-on and plugged-off with the tap-off unit door closed
- the door being closed if the tap-off unit has not been locked onto the busbar
- access to the electrical equipment and connection terminals when live
 the door being opened in the "ON" position for tap-off units fitted with a Compact NS or NSX or NG circuit breaker.

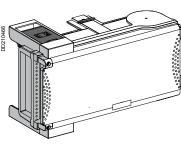
These tap-off units can be fitted with accessories such as:

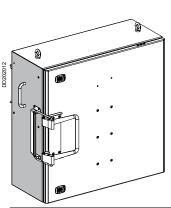
- door early break contacts
- adapter for lead sealing

The sheet steel tap-off units are fitted with a carrying handle.

Characteristics of tap-off units up to 100 A

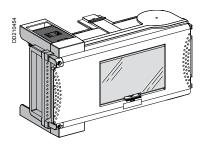
- Colour:
- □ white (RAL 9001) body and carrying handles
- □ transparent green door (similar design to the Kaedra enclosures).
- Material: self-extinguishing, halogen-free insulating plastic (fire resistant and very high temperature withstand).


Other characteristics: cable gland drilling zone, stainless steel screws and the door can be lead sealed.


Characteristics of tap-off units from 160 to 400 A

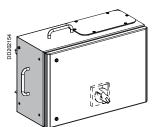
- Colour:
- □ white (RAL 9001) body
- □ black carrying handles (RAL 9005)
- □ 100 % polyester paint
- Material: galvanized sheet steel.

Other characteristics:


- unhingeable door (120° opening hinges)
- vertically bevelled polyurethane seals with a double fold for increased rigidity (similar design to the Sarel Spatial 3D enclosures)
- 25 mm grill type gland plates for a maximum access area.

Plug-on tap-off units for circuit breakers

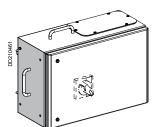
Canalis KTA


Isolator tap-off units for modular switchgear

Most 18 mm Multi 9 modular devices can be fitted into these tap-off units. They have a window on the front face for switchgear control and visualisation.

A transparent shutter ensures the window can be sealed.

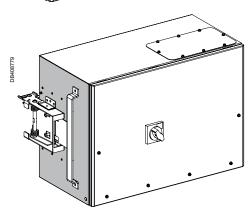
Two tap-off ratings are available:


- 63 A nominal current for 8 modules
- 100 A nominal current for 12 modules (accepts C120 circuit breakers).

Tap-off units for NG type modular switchgearThese tap-off units are fitted with a DIN rail and upstream connections for 18 mm wide modular devices.

The switchgear is operated via a rotary handle which prevents door opening when the circuit breaker is in the "ON" position.

Nominal current: 160 A for a 13-module capacity (accepts NG125 or NG160 fitted with a Vigi unit).

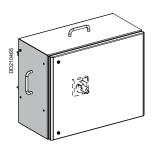


Isolator tap-off units for Compact NSX circuit breakers

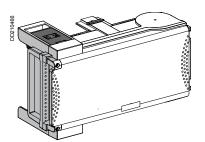
These tap-off units are fitted with mounting plates and upstream connections for fixed, front-connected 100 to 630 A Compact NSX circuit breakers (N, H or L version) with a rotary handle.

The 400 A tap-off units can only be fitted onto straight lengths with a rating greater

For plug-on circuit breakers, Vigi units, etc, please consult your Schneider Electric contact.


Measurement and metering isolator tap-off units

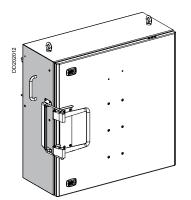
These tap-off units allow sub-metering to re-allocate power consumption costs by consumer and to monitor installations by, for example, following run load levels. The values measured using the Compact NSX TI unit are sent to the measurement unit which then sends the information to a central unit via a bus (see Measurement and metering).


- a mounting plate for a Compact NSX250 or 400 A circuit breaker with an extended rotary handle and a Compact NSX current transformer module (TI unit)
- a DIN rail for installing a Powerlogic PM810 measurement unit, a set of terminals, etc.

In severe operating conditions (> 40 °C ambient temperature), we recommend the use of a PM810 without display.

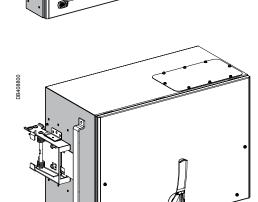
Plug-on tap-off units for fuses

These tap-off units provide the tap-offs with fuse protection (fuses not supplied).



- Plastic tap-off units

 Fitted with carriers for:


 50 to 100 A cylindrical NF fuses

 25 to 63 A DIN screwed fuses
- 100 A DIN blade fuses
- 32 to 80 A BS screwed fuses.

Steel tap-off units Fitted with carriers for:

- 160 to 400 A NF/DIN blade fuses
- 160 A BS screwed fuses
- fuses disconnector 630 A.

Fixed tap-off units for circuit breakers

Canalis KTA

Safety and operation

The electrical connection is made by plugging-on the tap-off unit into dedicated tapoff point whilst the busbar trunking is de-energised (plugging-off the unit must also be done with the busbar trunking de-energised).

The connection is mechanically tightened using a one-use torque bolt (10 daN.m). A mechanical foolproof system avoids the risk of incorrect assembly.

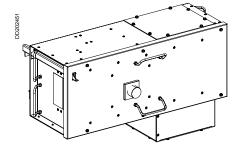
The door can only be opened once the load has been isolated (rotary handle).

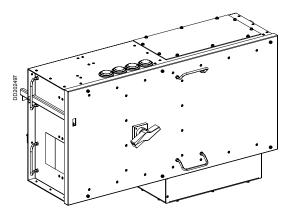
The bolt can only be tightened or untightened with the door open.

No live part is accessible with the door open, protection degree IP2X.

Characteristics of tap-off units from 400 to 1250 A

- Colour:
- □ white (RAL 9001) body
- Material: galvanized sheet steel.
- Other characteristics:
- □ the cables exit laterally through 2 aluminium plates (to be drilled by the installation contractor)
- □ cabling space can be increased by using the cable box supplied with the tap-off
- □ the door is fixed using 6 captive M6 screws and can be completely removed to facilitate cabling.

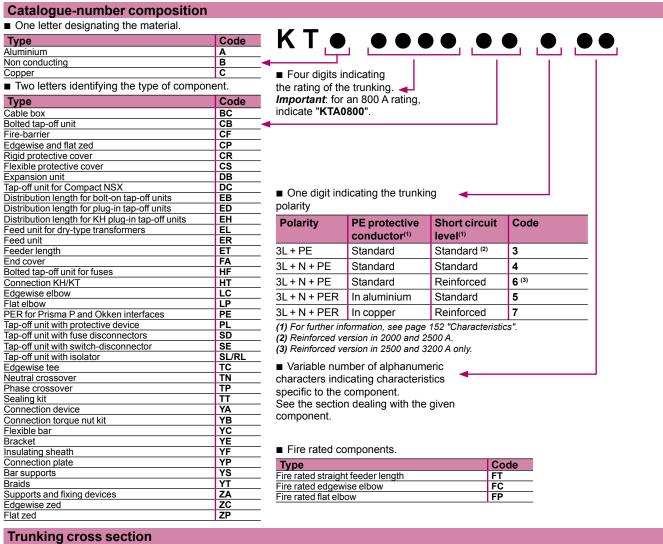

These tap-off units are used to supply loads or secondary runs (e.g. medium power distribution using Canalis KS).

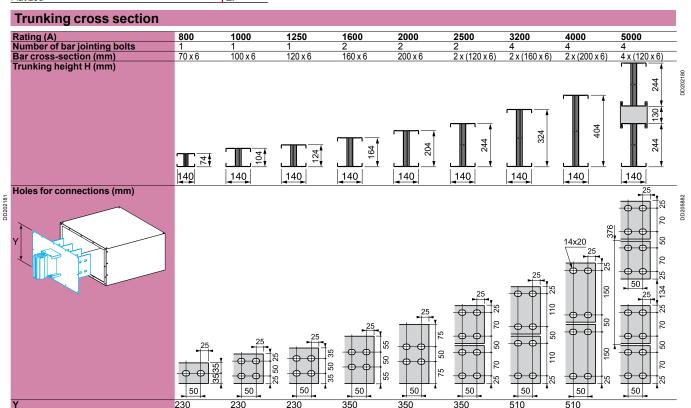

They are fitted to specific EB type straight lengths.

They comply with installation standards and regulations, whatever the earthing system (TT, IT, TNS or TNC):

- tap-off units fitted with a mounting plate for Compact NS and NSX 400/1250 A, 3 or 4 P:
- □ fixed device
- □ front connections
- □ extended rotary handle.

- Compact NSX400/630 A, connection capacity:
- □ IP54
- □ 3 x 300 mm² cables for the phases and neutral (hole diameter = 15 mm)
- □ 150 mm² for the PE
- Compact NS800/1000 A, connection capacity:
- □ IP54
- □ 4 x 300 mm² cables for the phases and neutral (hole diameter = 15 mm)
- □ 200 mm² for the PE (cable clamp)
- Compact NS1250 A, connection capacity:
- \Box 4 x 300 mm² cables for the phases and neutral (hole diameter = 15 mm)
- □ 200 mm² for the PE (cable clamp).

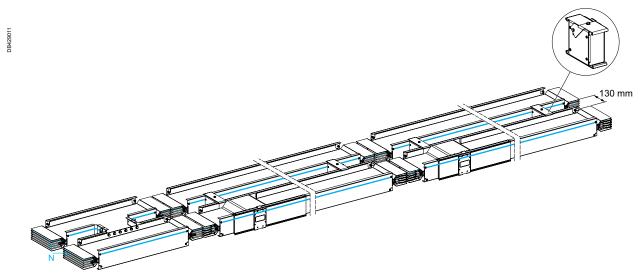



Catalogue numbers and dimensions

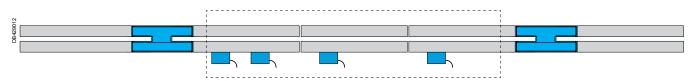
ntroduction	3
Presentation and description	23
Catalogue-number coding	50
Canalis KTA 5000 A	51
Run components	52
Additional run components	58
Elbow components for changing direction	62
Zed components for changing direction	68
Fire rated straight feeder lengths	72
Fire rated flat elbows	73
Fire rated edgewise elbows	74
Canalis interfaces for Prisma P LV switchboard	75
Canalis interfaces for Okken LV switchboard	78
Sealing kits	70 79
Feed units for switchboards and oil immersed transformers	
	80
Rigid protective covers	88
Adjustable protective covers for Minera immersed transformers	90
Flexible protective covers, Cable boxes	92
eed units for dry-type transformers	94
Protective covers for dry-type transformers	99
Connection accessories	102
Supports and fixings	110
Accessories	113
Fire-barrier kit	113
Tap-off units from Canalis KS range	114 114
3 to 100 A tap-off units for modular devices 25 to 160 A tap-off units for modular devices	115
00 to 400 A tap-off units for Compact NSX circuit breakers	116
250 to 400 A tap-off units for Compact NSX circuit breakers	117
330 A tap-off units for Compact NSX circuit breakers	118
60 to 100 A tap-off units for NF fuses 00 to 400 A tap-off units for NF fuses	119 120
25 to 63 A tap-off units for DIN fuses	121
00 to 400 A tap-off units for DIN fuses	122
330 A tap-off units with switch disconnector for DIN fuses	123
t2 to 160 A tap-off units for BS fuses Accessories	125 126
Bolted tap-off units from Canalis KT for Compact NSX/NS	120
100 to 1250 A circuit breakers	127
30 and 1000 A bolted tap-off units with switch-disconnetors	
or DIN fuses	128
Coupling isolators from 1000 to 2500 A	129
2500 A internal arcing resistant coupling isolator	130
Coupling isolators 3200 A	131
Protection of the run using Compact NS circuit breakers rom 1000 à 1600 A	132
	133
Special products	
Canalis KH substitution by Canalis KT KTA/KHF connection elements	135 135
Preserved KH tap-off units and substitution table	136
250 and 630 A tap-off units from Canalis KH range	
or Compact NSX circuit breakers	139
250 and 630 A tap-off units from Canalis KH range for NF fuses 330 A tap-off units from Canalis KH range with switch-disconnector for DIN fuses	140 141
00 to 630 A tap-off units from Canalis KH with disconnector Jean Muller	142
00 and 630 A tap-off units from Canalis KH with disconnector Jean Muller	143
250 to 630 A tap-off units from Canalis KH range with Fupact INF fuse switch	144
t50 to 1000 A fixed tap-off units for Canalis KHF range, with isolator and fuse carriers itsed tap-off units for Canalis KHF range, for circuit breaker NS630b, NS800, NS1000	145 146
Expansion of a Canalis KH line by means of Canalis KT	140
Expansion of a Canalis KH line by means of Canalis KT with a T-piece tap-off unit	
Aid KT line power supply with KH tap-off units installed	149
Design guide	151
nstallation guide	195
Recommendations	255

Catalogue-number coding

Canalis KTA



Canalis KTA 5000 A


Canalis KTA

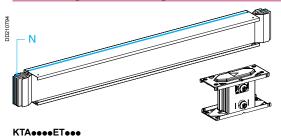
KTA5000 A is made of 2 units KTA2500 A linked together thanks to guide supports GS.

The current has to be re-balanced between the 2 runs in distribution applications.

If the total load of a group of tap-off units is above 1600 A, then add bridges (edgewise H units) between the 2 runs. Bridges have to be placed before and after the group.

Run components IP55

Canalis KTA 800 to 4000

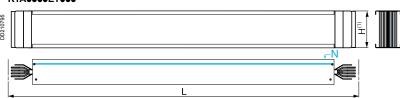

OrderingComplete the catalogue number by replacing "••••" by the rating. Important:

■ for the 800 A rating, add a "0" in the catalogue number : **KTA0800**■ add the dimensions of the selected component as a technical comment. **Example:** the catalogue number of an 800 A feeder length, 3L + N + PE,

2450 mm long, is: **KTA0800ET42C**, **L = 2450**

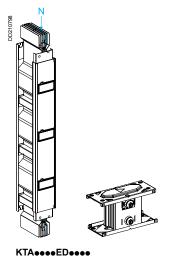
Rating

ET - Straight feeder lengths



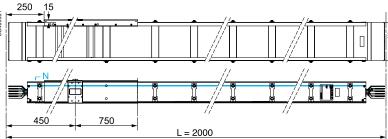
Туре	Length	Cat. no.		
	"L" (mm)	3L + PE	3L + N + PE (2)	3L + N + PER (1)
Fixed	2000	KTA•••ET320	KTA•••ET420	KTA••••ET520
	4000	KTA•••ET340	KTA••••ET440	KTA•••ET540
Made to	500 to 1500	KTA•••ET31A	KTA•••ET41A	KTA••••ET51A
measure	1501 to 1999	KTA•••ET32B	KTA••••ET42B	KTA•••ET52B
	2001 to 2500	KTA•••ET32C	KTA•••ET42C	KTA•••ET52C
	2501 to 3000	KTA•••ET33D	KTA••••ET43D	KTA•••ET53D
	3001 to 3500	KTA•••ET33E	KTA•••ET43E	KTA•••ET53E
	3501 to 3999	KTA•••ET33F	KTA•••ET43F	KTA•••ET53F

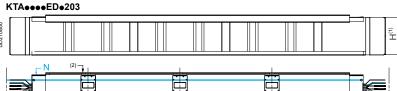
(1) To order the 3L+N+PER version with reinforced Isc, replace KTA••••ET5•• by KTA••••ET7••.

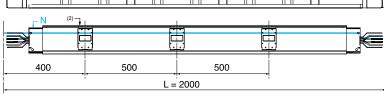

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced Isc, replace KTA2500ET4•• by KTA2500ET6•• and KTA3200ET4•• by KTA3200ET6••.

KTA • • • • ET • • •

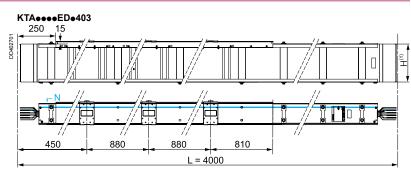
(1) See the "Trunking cross-section" table page 54.

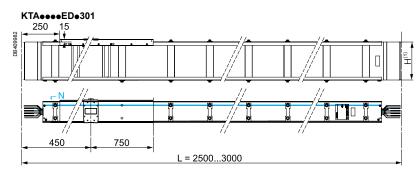

ED - Straight lengths for KS plug-in tap-off units

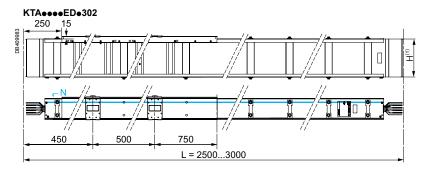

Туре	Length	Number of	Cat. no.			
	"L" (mm)	tap-offs	3L + PE	3L + N + PE (2)	3L + N + PER (1)	
Fixed	2000	1	KTA••••ED3201	KTA••••ED4201	KTA ••• ED5201	
		3	KTA••••ED3203	KTA ••• ED4203	KTA ••• ED5203	
	4000	3	KTA ••• ED3403	KTA••••ED4403	KTA ••• ED5403	
Made to	2500 to	1	KTA ••• ED3301	KTA • • • • ED4301	KTA ••• ED5301	
measure	3000	2	KTA ••• ED3302	KTA••••ED4302	KTA••••ED5302	
	3001 to	1	KTA••••ED3351	KTA • • • • ED4351	KTA ••• ED5351	
	3500	3	KTA ••• ED3353	KTA••••ED4353	KTA••••ED5353	

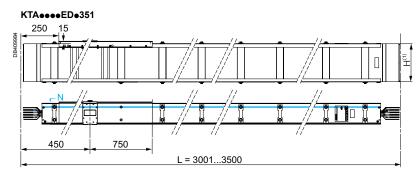

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••ED5••• by KTA••••ED7•••. (2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500ED4••• by KTA2500ED6••• and KTA3200ED4••• by KTA3200ED6•••.

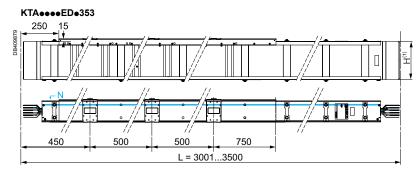
KTA••••ED•201

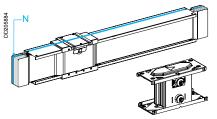




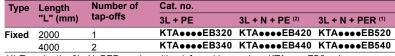



- (1) See the "Trunking cross-section" table page 54.
- (2) Tap-off units KTB630 •••• can not be installed at this outlet.


Straight lengths for KS plug-in tap-off units

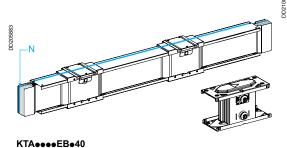


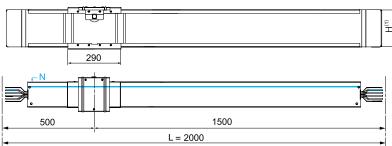
(1) See the "Trunking cross-section" table page 54.


Run components IP55

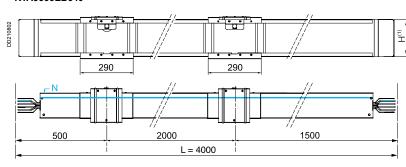
Canalis KTA 800 to 4000

EB - Straight lengths for bolted tap-off units


KTA••••EB•20



(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••EB5•• by KTA••••EB7••.


(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500EB4•• by KTA2500EB6•• and KTA3200EB4•• by KTA3200EB6••.

KTA••••EB•20

KTA••••EB•40

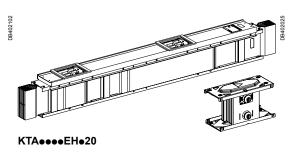
(1) See the "Trunking cross-section" table below.

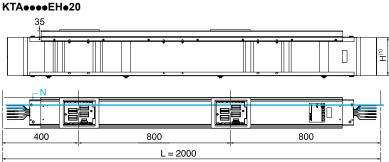
Rating (A)		800(1)	1000	1250	1600	2000	2500	3200	4000	5000
Weight (kg/m)	3L + PE	12	14	16	19	22	25	31	38	50
	3L + N + PE	13	16	18	22	26	30	37	45	60
	3L + N + PER	15	19	21	26	31	36	46	56	72
Height H (mm) Width W (mm)		140	140	140	140	140 to 2	140	140	140	140

Ordering

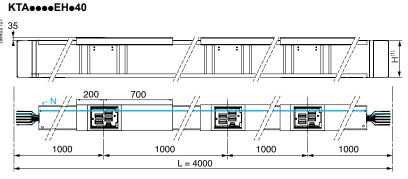
Complete the catalogue number by replacing the " $\bullet \bullet \bullet \bullet$ " with the rating.

Important: in the catalogue number, for a rating of 800 A, add a "0": KTA0800.

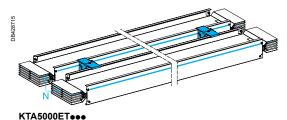

Example: a transport section 800 A, length 4 m.


Catalogue number for 3L+N+PE: **KTA0800EH440**.

EH - Straight lengths for KH plug-in tap-off units


Туре	Length	Number of	Cat. no. (4)		
	"L" (mm)	tap-offs	3L+PE	3L + N + PE (2)	3L + N + PER (3)
Fixed	2000	2	KTA••••EH320	KTA••••EH420	KTA••••EH520
	4000	3	KTA••••EH340	KTA•••EH440	KTA••••EH540

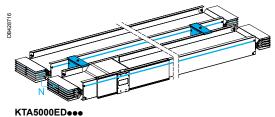
- (1) See the "Trunking cross-section" table page 54.
- (2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500EH4•• by KTA2500EH6•• and KTA3200EH4•• by KTA3200EH6••.
- (3) To order the 3L+N+PER 2500 A and 3200 A version with reinforced lsc, replace
- KTA2500EH5●● by KTA2500EH7●● and KTA3200EH5●● by KTA3200EH7●●.
- (4) Not available for KTA5000.


KTA••••EH•40

Run components IP55

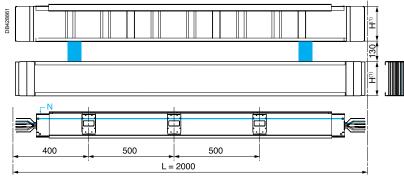
Canalis KTA 5000

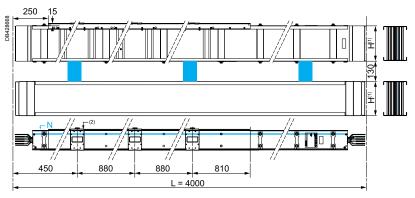
ET - Straight feeder lengths


Type	Length "L"	Cat. no.			
	(mm)	3L + PE	3L + N + PE	3L + N + PER (1)	
Fixed	2000	KTA5000ET320	KTA5000ET420	KTA5000ET520	
rixeu	4000	KTA5000ET340	KTA5000ET440	KTA5000ET540	
Made to	500 to 1500	KTA5000ET31A	KTA5000ET41A	KTA5000ET51A	
measure	1501 to 1999	KTA5000ET32B	KTA5000ET42B	KTA5000ET52B	
	2001 to 2500	KTA5000ET32C	KTA5000ET42C	KTA5000ET52C	
	2501 to 3000	KTA5000ET33D	KTA5000ET43D	KTA5000ET53D	
	3001 to 3500	KTA5000ET33E	KTA5000ET43E	KTA5000ET53E	
	3501 to 3999	KTA5000ET33F	KTA5000ET43F	KTA5000ET53F	

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000ET5●● by KTA5000ET7●●.

(1) See the "Trunking cross-section" table page 54.

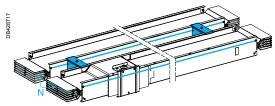

ED - Straight lengths for KS plug-in tap-off units


Type	Length	Number of	Cat. no.		
	"L" (mm)	tap-offs	3L + PE	3L + N + PE (2)	3L + N + PER (1)
Fixed	2000	3	KTA5000ED3203	KTA5000ED4203	KTA5000ED5203
	4000	3	KTA5000ED3403	KTA5000ED4403	KTA5000ED5403
		555		/ //TA =000E	D = 0 /

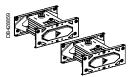
(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000ED5●3 by KTA5000ED7●●3.

KTA••••ED•203

KTA••••ED•403

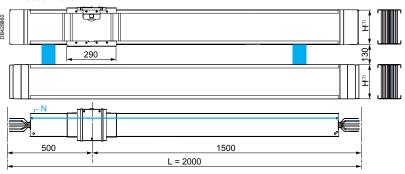


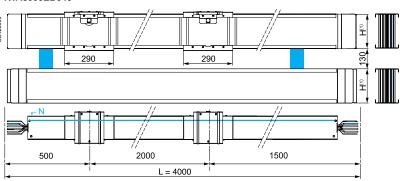
- (1) See the "Trunking cross-section" table page 54.
 (2) Tap-off units KTB630••••• can not be installed at this outlet.



Canalis KTA 5000

EB - Straight lengths for bolted tap-off units


KTA5000EB●●●


Туре	Length	Number of	Cat. no.		
	"L" (mm)	tap-offs	3L + PE	3L + N + PE	3L + N + PER (1)
Fixed	2000	1	KTA5000EB320	KTA5000EB420	KTA5000EB520
	4000	2	KTA5000EB340	KTA5000EB440	KTA5000EB540

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000EB5●● by KTA5000EB7●●.

KTA5000EB•20

KTA5000EB•40

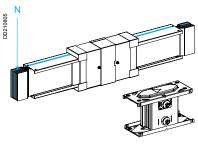
(1) See the "Trunking cross-section" table page 54.

Additional run components IP55

Canalis KTA 800 to 4000

Ordering

Complete the catalogue number by replacing "••••" by the rating. Important:

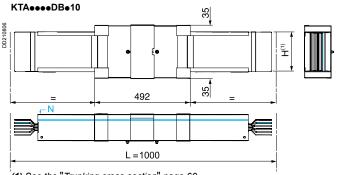

- for the 800 A rating, add a "0" in the catalogue number : **KTA0800**
- add the dimensions of the selected component as a technical comment.

Example: the catalogue number of a 1250 A neutral crossover length,

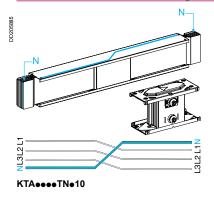
3L + N + PE, 1000 mm long, is: **KTA1250TN410**

Rating

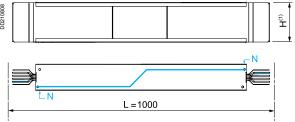
DB - Straight expansion unit



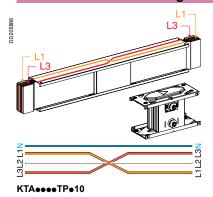
KTA••••DB•10


(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••DB510 by KTA••••DB710.

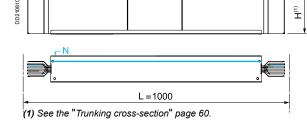
(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500DB4ee by KTA2500DB6ee and KTA3200DB4ee by KTA3200DB6ee.


(1) See the "Trunking cross-section" page 60.

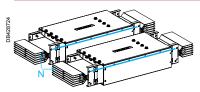
TN - Neutral crossover length


Туре	Length "L"	Cat. no.
	(mm)	3L + N + PE
Fixed	1000	KTA••••TN410
Fixed	1000	KTA••••TN610

KTA••••TN•10


(1) See the "Trunking cross-section" page 60.

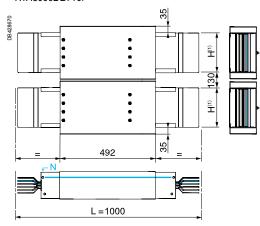
TP - Phase crossover length



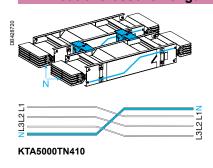
Туре	Length "L"	Cat. no.
	(mm)	3L + N + PE
Fixed	1000	KTA•●●●TP410
Fixed	1000	KTA••••TP610

KTA••••TP•10

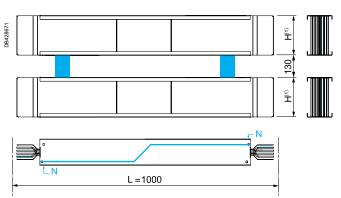
DB - Straight expansion unit



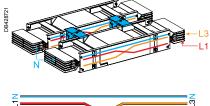
KTA5000DB•10

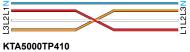

Ту	/pe	Length "L"	Cat. no.			
		(mm)	3L + PE	3L + N + PE	3L + N + PER (1)	
Fix	red	1000	KTA5000DB310	KTA5000DB410	KTA5000DB510	

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000DB510 by KTA5000DB710.

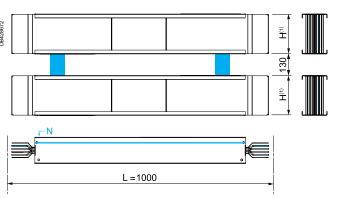

(1) See the "Trunking cross-section" page 60.

TN - Neutral crossover length




Туре	Length "L"	Cat. no. (1)
	(mm)	3L + N + PE
Fixed	1000	KTA5000TN410

(1) See the "Trunking cross-section" page 60.

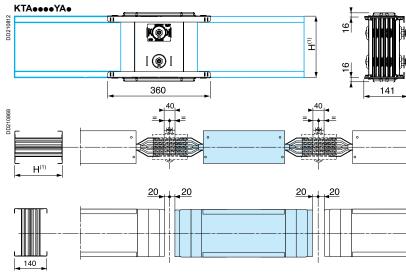

TP - Phase crossover length

Type Length "L"	Cat. no. (1)	
	(mm)	3L + N + PE
Fixed	1000	KTA5000TP410

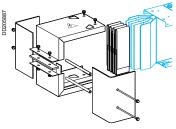
(1) See the "Trunking cross-section" page 60.

Additional run components IP55

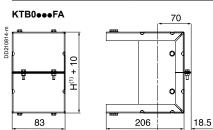
Canalis KTA 800 to 5000


YA - Additional jointing units

KTA••••YA•


Туре	Cat. no. (2)			
	3L + PE	3L + N + PE	3L + N + PER	
Version code (1)	3	4 or 6	5	7
Jointing unit	KTA••••YA3	KTA••••YA•	KTA••••YA5	KTA••••YA7

- (1) See catalogue-number coding page 50.
- (2) References KTA5000YA• are made of 2 references KTA2500YA•.


(1) See the "Trunking cross-section" table below.

FA - End covers

-	_			
ΚI	BU	•	∙F	-Α

Туре	Rating of the trunking (A)	Height H of the trunking (mm)	Cat. no.
End cover	800	74	KTB0074FA
	1000	104	KTB0104FA
	1250	124	KTB0124FA
	1600	164	KTB0164FA
	2000	204	KTB0204FA
	2500	244	KTB0244FA
	3200	324	KTB0324FA
	4000	404	KTB0404FA
	5000(1)(2)	622	KTB0622FA

- (1) See the "Trunking cross-section"
- table below.
 (2) The reference KTB0622FA is made of 2 references KTB0244FA.

Rating (A)		800(1)	1000	1250	1600	2000	2500	3200	4000	5000
Weight (kg/m)	3L + PE	12	14	16	19	22	25	31	38	50
	3L + N + PE	13	16	18	22	26	30	37	45	60
	3L + N + PER	15	19	21	26	31	36	46	56	72
Height H (mm) Width W (mm)		4	─ 75∱	-24 	[64	204	244	324	404	244 130 244

140

140

140

140

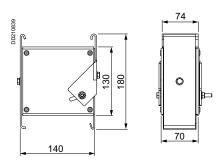
140

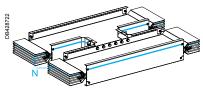
140

140

140

140

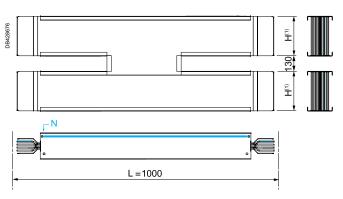

GS - Guide support


2 guide supports⁽¹⁾ are required to linked all KTA2500 elements together in order to create the KTA5000 run.

(1) 3 guide supports are required for 4 m straight length, 1 for straight end feed units ER1. These guide supports carry the label KTA5000A.

Description	Cat. no.	Weight (kg)
1 guide support	KTA5000GS1	0.6

HC - Edgewise H



KTA5000HC•10

Туре	Length "L"	Cat. no.			
	(mm)	3L + PE	3L + N + PE	3L + N + PER (1)	
Fixed	1000	KTA5000HC310	KTA5000HC410	KTA5000HC510	

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000HC510 by KTA5000HC710.

(1) See the "Trunking cross-section" page 60.

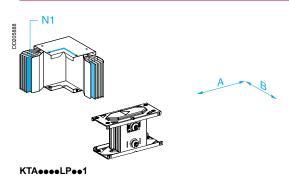
Elbow components for changing direction

IP55

Canalis KTA 800 to 4000

Ordering

Complete the catalogue number by replacing "••••" by the rating. Important:

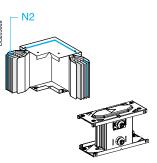

- for the 800 A rating, add a "0" in the catalogue number : KTA0800
- add the dimensions of the selected component as a technical comment.

Example: the catalogue number of a 2000 A flat elbow, N1, 3L + N + PE with dimensions A = 300 mm and B = 650 mm is:

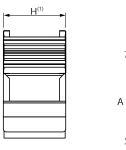
KTA2000LP4B1, A = 300, B = 650.

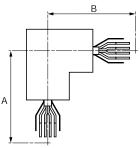
- Rating

LP - Flat elbows

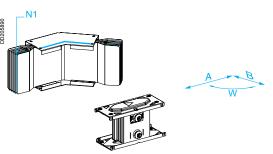


Туре	Position of	Cat. no.		
	neutral	3L + PE	3L + N + PE (2)	3L + N + PER (1)
2 fixed branches	N1	KTA••••LP3A1	KTA••••LP4A1	KTA••••LP5A1
	N2	KTA••••LP3A2	KTA••••LP4A2	KTA••••LP5A2
1 made to measure	N1	KTA••••LP3B1	KTA••••LP4B1	KTA••••LP5B1
short branche	N2	KTA••••LP3B2	KTA••••LP4B2	KTA••••LP5B2
1 made to measure	N1	KTA••••LP3D1	KTA••••LP4D1	KTA••••LP5D1
long branche	N2	KTA••••LP3D2	KTA••••LP4D2	KTA••••LP5D2
2 made to measure	N1	KTA••••LP3E1	KTA••••LP4E1	KTA••••LP5E1
branches	N2	KTA••••LP3E2	KTA••••LP4E2	KTA••••LP5E2


(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••LP5•• by KTA••••LP7••.


(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500LP4•• by KTA2500LP6•• and KTA3200LP4•• by KTA3200LP6••.

KTA••••LP•••

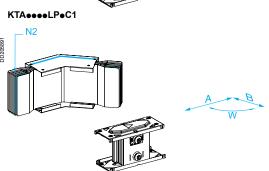


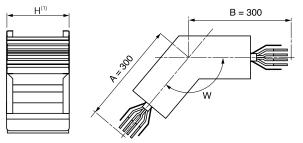
(1) See the "Trunking cross-section" table page 67.

Dimensions

Туре	Rating (A)	Dimensions (mm)		
		A	В	
2 fixed branches	800, 1000, 1250	300	300	
	1600, 2000, 2500			
	3200, 4000			
1 made to	800, 1000, 1250	300	301 to 799	
measure short	1600, 2000, 2500	301 to 799	300	
branche	3200, 4000			
1 made to	800, 1000, 1250	300	800 to 1000	
measure long		800 to 1000	300	
branche	1600, 2000, 2500	300	800 to 1100	
		800 to 1100	300	
	3200, 4000	300	800 to 1400	
		800 to 1400	300	
2 made to	800, 1000, 1250	301 to 600	301 to 1000	
measure		301 to 1000	301 to 600	
branches	1600, 2000, 2500	301 to 600	301 to 1100	
		301 to 1100	301 to 600	
	3200, 4000	301 to 600	301 to 1400	
		301 to 1400	301 to 600	
	5000	301 to 600	301 to 1100	
		301 to 1100	301 to 600	

LP•C - Flat elbows with made to measure angles

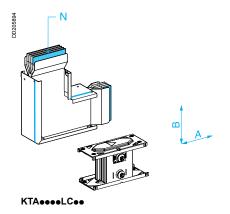



Туре	Position of	Cat. no.	at. no.		
	neutral	3L + PE	3L + N + PE (2)	3L + N + PER(1)	
Made to	N1	KTA••••LP3C1	KTA••••LP4C1	KTA••••LP5C1	
measure angle	N2	KTA••••LP3C2	KTA••••LP4C2	KTA••••LP5C2	

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••LP5C• by KTA••••LP7C•.

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500LP4●● by KTA2500LP6●● and KTA3200LP4●● by KTA3200LP6●●.

KTA••••LP•C•

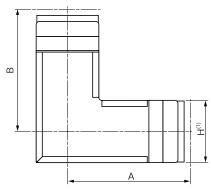

(1) See the "Trunking cross-section" table page 67.

Dimensions

Туре	Rating (A)	Dimensions (mm)		
		Α	В	W
Made to measure	All	300	300	91° to 179°

LC - Edgewise elbows

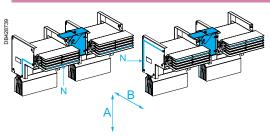
KTA••••LP•C2


Туре	Cat. no.		
	3L + PE	3L + N + PE (2)	3L + N + PER (1)
2 fixed branches	KTA••••LC3A	KTA••••LC4A	KTA••••LC5A
1 made to measure short branche	KTA••••LC3B	KTA••••LC4B	KTA••••LC5B
1 made to measure long branche	KTA••••LC3D	KTA••••LC4D	KTA••••LC5D
2 made to measure branches	KTA••••LC3E	KTA••••LC4E	KTA••••LC5E

(1) To order the 3L+N+PER version with reinforced Isc, replace KTA••••LC5• by KTA••••LC7•.

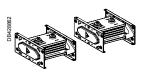
(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lcc, replace KTA2500LC4• by KTA2500LC6• and KTA3200LC4• by KTA3200LC6•.

KTA••••LC••


(1) See the "Trunking cross-section" table page 67 and dimensions page 66.

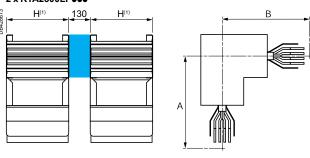
Elbow components for changing direction

IP55

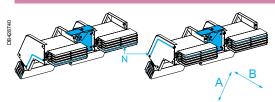

Canalis KTA 5000

LP - Elbows

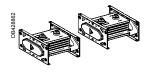
KTA5000LP●●1


KTA5000LP●●2

Туре	Position of	Cat. no.		
	neutral	3L + PE	3L + N + PE	3L + N + PER (1)
2 fixed branches	N1	KTA5000LP3A1	KTA5000LP4A1	KTA5000LP5A1
	N2	KTA5000LP3A2	KTA5000LP4A2	KTA5000LP5A2
1 made to	N1	KTA5000LP3B1	KTA5000LP4B1	KTA5000LP5B1
measure short branche	N2	KTA5000LP3B2	KTA5000LP4B2	KTA5000LP5B2
1 made to	N1	KTA5000LP3D1	KTA5000LP4D1	KTA5000LP5D1
measure long branche	N2	KTA5000LP3D2	KTA5000LP4D2	KTA5000LP5D2
2 made to	N1	KTA5000LP3E1	KTA5000LP4E1	KTA5000LP5E1
measure branches	N2	KTA5000LP3E2	KTA5000LP4E2	KTA5000LP5E2

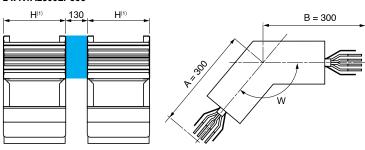

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000LP5•• by KTA5000LP7••.

2 x KTA2500LP•••


(1) See the "Trunking cross-section" table page 67 and dimensions page 66.

LP●C - Flat elbows with made to measure angles

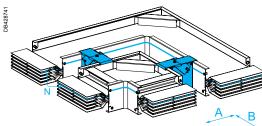
KTA5000LPeC1


KTA5000LP⊕C2

Туре	Position of	Cat. no. (2)		
	neutral	3L + PE	3L + N + PE	3L + N + PER (1)
Made to	N1	KTA5000LP3C1	KTA5000LP4C1	KTA5000LP5C1
measure angle	N2	KTA5000LP3C2	KTA5000LP4C2	KTA5000LP5C2

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000LP5C● by KTA5000LP7C●.

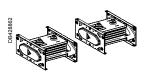
2 x KTA2500LP•••


(1) See the "Trunking cross-section" table page 67.

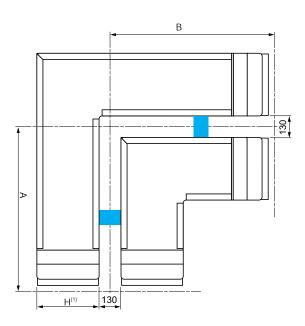
Dimensions

Rating (A)	Dimensions (mm)				
	Α	В	W		
5000	300	300	91° to 179°		

Canalis KTA 5000


LC - Edgewise elbows

2 x KTA2500LC•••


Туре	Cat. no. (2)				
	3L + PE	3L + N + PE	3L + N + PER (1)		
2 fixed branches	KTA5000LC3A	KTA5000LC4A	KTA5000LC5A		
1 made to measure short branche	KTA5000LC3B	KTA5000LC4B	KTA5000LC5B		
Tilludo to illododi o olioit bidilollo					

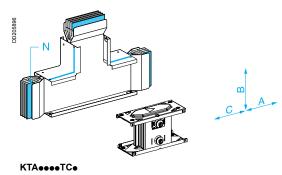
(1) To order the 3L+N+PER version with reinforced Isc, replace KTA5000LC5• by KTA5000LC7•.

KTA5000LC•••

(1) See the "Trunking cross-section" table page 67 and dimensions page 66.

Elbow components for changing direction

IP55

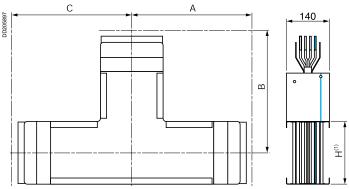

Canalis KTA 800 to 5000

_	ime	-	:~	-

Туре	Rating (A)	Dimensions (n	nm)
		Α	В
fixed branches	800(1)	275	275
	1000	290	290
	1250	300	300
	1600	320	320
	2000	340	340
	2500	360	360
	3200	400	400
	4000	440	440
	5000	548	548
made to	800(1)	275	276 to 774
neasure short		276 to 774	275
ranche	1000	290	291 to 789
		291 to 789	290
	1250	300	301 to 799
		301 to 799	300
	1600	320	321 to 819
	***	321 to 819	320
	2000	340	341 to 839
		341 to 839	340
	2500	360	361 to 859
	2000	361 to 859	360
	3200	400	401 to 899
	3200	401 to 899	400
	4000	440	441 to 939
	7000	441 to 939	441 (0 939
	5000	548	
	5000		549 to 1047
mada ta	900(1)	549 to 1047	548
made to easure long	800(1)	275	775 to 1000
anche	4000	775 to 1000	275
	1000	290	790 to 1000
	1050	790 to 1000	290
	1250	300	800 to 1000
		800 to 1000	300
	1600	320	820 to 1100
		820 to 1100	320
	2000	340	840 to 1100
		840 to 1100	340
	2500	360	860 to 1100
		860 to 1100	360
	3200	400	900 to 1400
		900 to 1400	400
	4000	440	940 to 1400
		940 to 1400	440
made to	800(1)	276 to 745	276 to 1000
easure		276 to 1000	276 to 745
anches	1000	291 to 730	291 to 1000
		291 to 1000	291 to 730
	1250	301 to 720	301 to 1000
		301 to 1000	301 to 720
	1600	321 to 700	321 to 1100
		321 to 1100	321 to 700
	2000	341 to 680	341 to 1100
		341 to 1100	341 to 680
	2500	361 to 660	
	2500	361 to 660	361 to 1100
		361 to 1100	361 to 660
	2500 3200	361 to 1100 401 to 620	361 to 660 401 to 1400
		361 to 1100	361 to 660

(1) For the 800 A rating, indicate "KTA0800".

TC - Edgewise tee

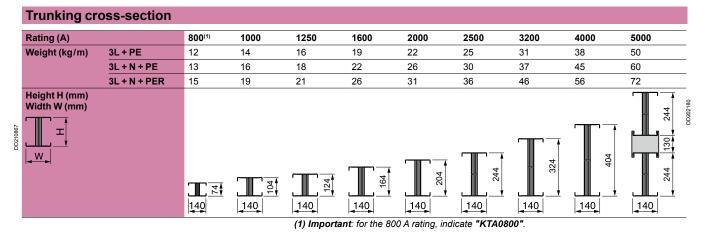


Туре	Cat. no. (3)		
	3L + PE	3L + N + PE (2)	3L + N + PER (1)
Fixed	KTA••••TC3	KTA••••TC4	KTA••••TC5

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••TC5 by

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500TC4 by KTA2500TC6 and KTA3200TC4 by KTA3200TC6.
(3) Not available for KTA5000.

KTA••••TC•



(1) See the "Trunking cross-section" table below.

Dimensions

Туре	Rating (A)	Dimensions (mm)		
		Α	В	С
Fixed	800(2)	275	275	275
	1000	290	290	290
	1250	300	300	300
	1600	320	320	320
	2000	340	340	340
	2500	360	360	360
	3200	400	400	400
	4000	440	440	440

(2) For the 800 A rating, indicate "KTA0800".

Zed components for changing direction

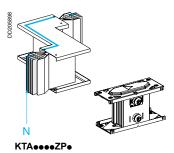
IP55

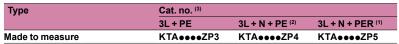
Canalis KTA 800 to 4000

Ordering

Complete the catalogue number by replacing "●●●●" by the rating.

Important:

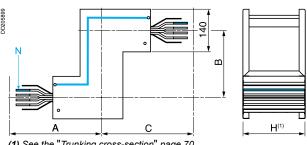

for the 800 A rating, add a "0" in the catalogue number: KTA0800


add the dimensions of the selected component as a technical comment.

Example: the catalogue number of a 1600 A edgewise zed unit, N2, 3L + N + PE with dimensions A = 300 mm, B = 450 mm, C = 300 mm is: $KTA_{1600}ZC42$, A = 300, B = 450, C = 300.

Rating

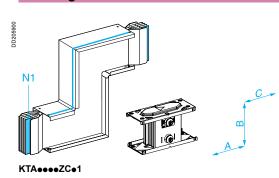
ZP - Flat zed units

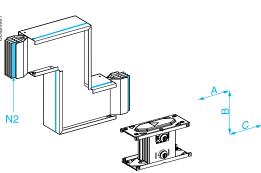


(1) To order the 3L+N+PER version with reinforced Isc, replace KTA••••ZP5 by KTA••••ZP7.

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced Isc, replace KTA2500ZP4 by KTA2500ZP6 and KTA3200ZP4 by KTA3200ZP6.

(3) References KTA5000ZP• are made of 2 references KTA2500ZP•. See details page 69.

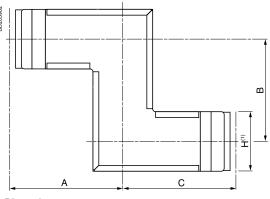

KTA



(1) See the "Trunking cross-section" page 70.

Rating (A)	Dimensions	Dimensions (mm)			
	Α	В	С		
All	300	130 to 599	300		

ZC - Edgewise zed units



Туре	Position of	Cat. no.		
	neutral	3L + PE	3L + N + PE (2)	3L + N + PER(1)
Made to	N1	KTA••••ZC31	KTA••••ZC41	KTA••••ZC51
measure	N2	KTA••••ZC32	KTA•••ZC42	KTA••••ZC52

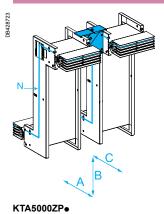
(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••ZC5• by KTA••••ZC7•.

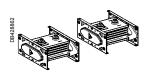
(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500ZC4• by KTA2500ZC6• and KTA3200ZC4• by KTA3200ZC6•.

KTA••••ZC••

	Î
140	

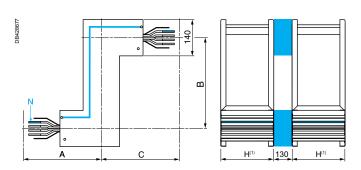
Dimensions


Rating (A)	Dimensions (mm)						
	Α	В	С				
800(2)	275	90 to 549	275				
1000	290	90 to 579	290				
1250	300	90 to 599	300				
1600	320	90 to 639	320				
2000	340	90 to 679	340				
2500	360	90 to 719	360				
3200	400	90 to 799	400				
4000	440	90 to 879	440				


(1) See the "Trunking crosssection" page 70. (2) For the 800 A rating, indicate "KTA0800".

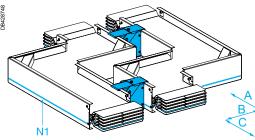
KTA••••ZC•2

Canalis KTA 5000

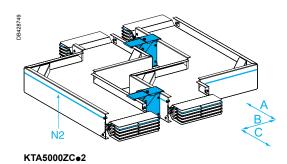

ZP - Flat zed units

Туре	Cat. no.		
	3L + PE	3L + N + PE	3L + N + PER (1)
Made to measure	KTA5000ZP3	KTA5000ZP4	KTA5000ZP5

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000ZP5 by KTA5000ZP7.

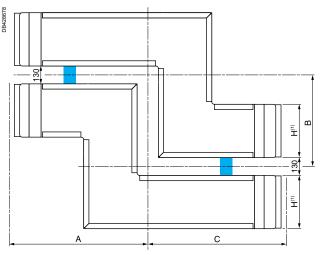


(1) See the "Trunking cross-section" page 70.


Dimensions

Rating (A)	Dimensions (mm)				
	A	В	С		
5000	300	130 to 599	300		

ZC - Edgewise zed units



KΤ	ΓA5	00	0Z(C•1

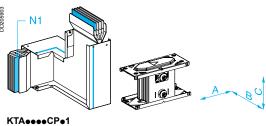
Туре	Position of	Cat. no. (2)				
	neutral	3L + PE	3L + N + PE	3L + N + PER (1)		
Made to	N1	KTA5000ZC31	KTA5000ZC41	KTA5000ZC51		
measure	N2	KTA5000ZC32	KTA5000ZC42	KTA5000ZC52		

(1) To order the 3L+N+PER version with reinforced Isc, replace KTA5000ZC5● by KTA5000ZC7●.

(1) See the "Trunking cross-section" page 70.

Dimensions

Rating (A)	Dimensi	ons (mm)		
	Α	В	С	
5000	548	90 to 719	548	

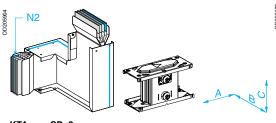

140

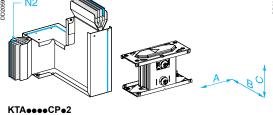
Zed components for changing direction

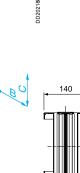
IP55

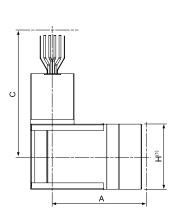
Canalis KTA 800 to 4000

CP - Edgewise and flat zed units

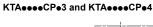


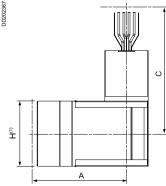

Туре	Position of	Cat. no.				
	neutral	3L + PE	3L + N + PE (2)	3L + N + PER (1)		
Made to	N1	KTA•••CP31	KTA••••CP41	KTA•••CP51		
measure	N2	KTA•••CP32	KTA••••CP42	KTA•••CP52		
	N3	KTA•••CP33	KTA••••CP43	KTA•••CP53		
	N4	KTA•••CP34	KTA•••CP44	KTA•••CP54		

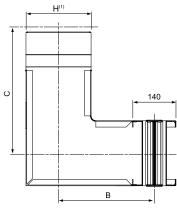

(1) To order the 3L+N+PER version with reinforced Isc, replace KTA••••CP5• by KTA••••CP7•.

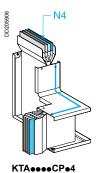

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500CP4• by KTA2500CP6• and KTA3200CP4• by KTA3200CP6•.

KTA••••CP•1 and KTA••••CP•2



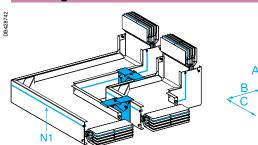






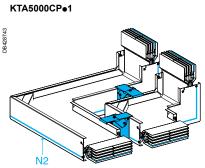
В

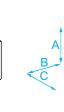
KTA••••CP•3

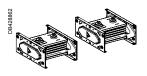

Dimensions

Rating (A)	Dimensions (mm)					
	Α	В	С			
800(2)	300	195 to 574	275			
1000	300	210 to 589	290			
1250	300	220 to 599	300			
1600	300	240 to 619	320			
2000	300	260 to 639	340			
2500	300	280 to 659	360			
3200	300	320 to 699	400			
4000	300	360 to 739	440			

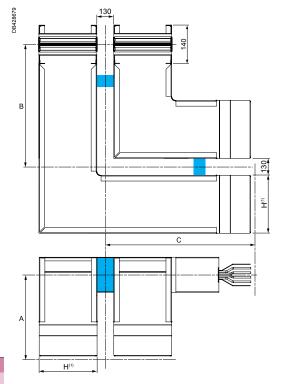
(1) See the "Trunking crosssection" table below. (2) For the 800 A rating, indicate "KTA0800".

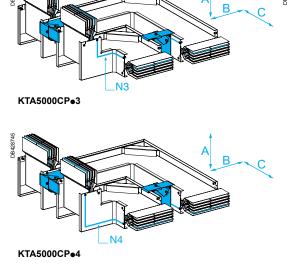

Rating (A)		800(1)	1000	1250	1600	2000	2500	3200	4000	5000
Weight (kg/m)	3L + PE	12	14	16	19	22	25	31	38	50
	3L + N + PE	13	16	18	22	26	30	37	45	60
Height H (mm)	3L + N + PER	15	19	21	26	31	36	46	56	72
Width W (mm)		1 44			164	204	244	324	404	244 130 244

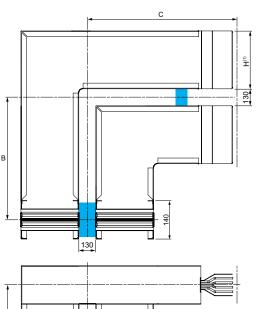

CP - Edgewise and flat zed units


Туре	Position of	Cat. no. (2)				
	neutral	3L + PE	3L + N + PE	3L + N + PER (1)		
Made to	N1	KTA5000CP31	KTA5000CP41	KTA5000CP51		
measure	N2	KTA5000CP32	KTA5000CP42	KTA5000CP52		
	N3	KTA5000CP33	KTA5000CP43	KTA5000CP53		
	N4	KTA5000CP34	KTA5000CP44	KTA5000CP54		

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000CP5• by KTA5000CP7•.


KTA5000CP•2




(1) See the "Trunking cross-section" page 70.

Dimensions

	-			
Rating (A)	Dimension	ons (mm)		
	Α	В	С	
5000	300	468 to 947	5/18	

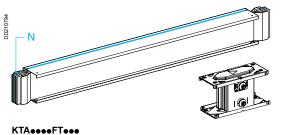
Catalogue numbers and dimensions

Canalis KTA 800 to 4000

Fire rated straight feeder lengths

IP55

Compliant with the IEC 60331

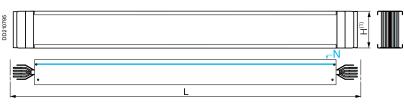

OrderingComplete the catalogue number by replacing "••••" by the rating. Important:

■ for the 800 A rating, add a "0" in the catalogue number : **KTA0800**■ add the dimensions of the selected component as a technical comment. **Example:** the catalogue number of an 800 A feeder length, 3L + N + PE,

2450 mm long, is: **KTA0800FT42C**, **L = 2450**

Rating

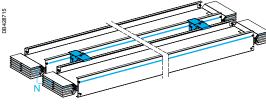
FT - Fire rated straight feeder lengths



Туре	Length	Cat. no.		
	"L" (mm)	3L + PE	3L + N + PE (2)	3L + N + PER (1)
Fixed	2000	KTA•••FT320	KTA•••FT420	KTA••••FT520
	4000	KTA•••FT340	KTA••••FT440	KTA••••FT540
Made to	500 to 1500	KTA•••FT31A	KTA••••FT41A	KTA••••FT51A
measure	1501 to 1999	KTA•••FT32B	KTA••••FT42B	KTA••••FT52B
	2001 to 2500	KTA•••FT32C	KTA••••FT42C	KTA•••FT52C
	2501 to 3000	KTA•••FT33D	KTA••••FT43D	KTA••••FT53D
	3001 to 3500	KTA•••FT33E	KTA•••FT43E	KTA••••FT53E
	3501 to 3999	KTA•••FT33F	KTA••••FT43F	KTA•••FT53F

(1) To order the 3L+N+PER version with reinforced Isc, replace KTA••••FT5•• by KTA••••FT7••.

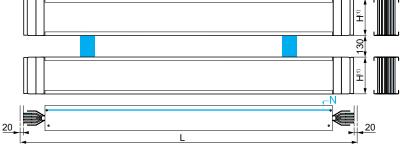
(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced Isc, replace KTA2500FT4•• by KTA2500FT6•• and KTA3200FT4•• by KTA3200FT6••.


KTA••••FT•••

(1) See the "Trunking cross-section" table page 70.

Canalis KTA 5000

FT - Fire rated straight feeder lengths



KTA5000FT●●●

Туре	Length "L"	Cat. no.				
	(mm)	3L + PE	3L + N + PE	3L + N + PER (1)		
Fixed	2000	KTA5000FT320	KTA5000FT420	KTA5000FT520		
rixeu	4000	KTA5000FT340	KTA5000FT440	KTA5000FT540		
Made to	500 to 1500	KTA5000FT31A	KTA5000FT41A	KTA5000FT51A		
measure	1501 to 1999	KTA5000FT32B	KTA5000FT42B	KTA5000FT52B		
	2001 to 2500	KTA5000FT32C	KTA5000FT42C	KTA5000FT52C		
	2501 to 3000	KTA5000FT33D	KTA5000FT43D	KTA5000FT53D		
	3001 to 3500	KTA5000FT33E	KTA5000FT43E	KTA5000FT53E		
	3501 to 3999	KTA5000FT33F	KTA5000FT43F	KTA5000FT53F		

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000FT5●● by KTA5000FT7●●.

(1) See the "Trunking cross-section" table page 70.

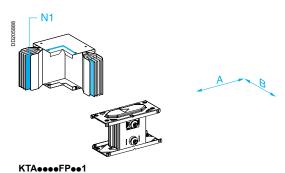
Fire rated flat elbows

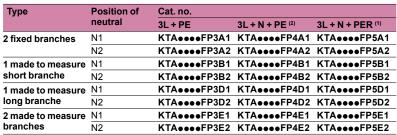
IP55

Compliant with the IEC 60331

Canalis KTA 800 to 4000

Ordering

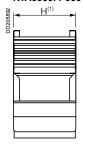

Complete the catalogue number by replacing "••••" by the rating.

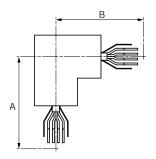

- for the 800 A rating, add a "0" in the catalogue number : **KTA0800** add the dimensions of the selected component as a technical comment.

Example: the catalogue number of a 2000 A flat elbow, N1, 3L + N + PE with dimensions A = 300 mm and B = 650 mm is: KTA2000FP4B1, A = 300, B = 650.

Rating

FP - Fire rated flat elbows

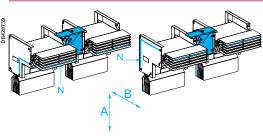




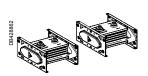
(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••FP5•• by

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500FP4ee by KTA2500FP6ee and KTA3200FP4ee by KTA3200FP6ee.

KTA•••FP•••

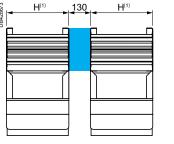


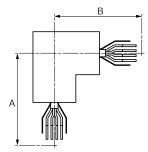
(1) See the "Trunking cross-section" table page 70 and dimensions page 66.


KTA•••FP••2

Canalis KTA 5000

FP - Fire rated flat elbows

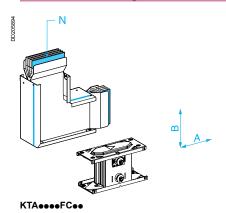

KTA5000FP●●1 KTA5000FP●●2



Туре	Position of	Cat. no.		
Туре	neutral	3L + PE	3L + N + PE	3L + N + PER (1)
2 fixed branches	N1	KTA5000FP3A1	KTA5000FP4A1	KTA5000FP5A1
	N2	KTA5000FP3A2	KTA5000FP4A2	KTA5000FP5A2
1 made to	N1	KTA5000FP3B1	KTA5000FP4B1	KTA5000FP5B1
measure short branche	N2	KTA5000FP3B2	KTA5000FP4B2	KTA5000FP5B2
1 made to	N1	KTA5000FP3D1	KTA5000FP4D1	KTA5000FP5D1
measure long branche	N2	KTA5000FP3D2	KTA5000FP4D2	KTA5000FP5D2
2 made to	N1	KTA5000FP3E1	KTA5000FP4E1	KTA5000FP5E1
measure branches	N2	KTA5000FP3E2	KTA5000FP4E2	KTA5000FP5E2

(1) To order the 3L+N+PER version with reinforced Isc, replace KTA5000FP5. by KTA5000FP7 • •

2 x KTA2500FP • • •


(1) See the "Trunking cross-section" table page 70 and dimensions page 66.

Fire rated edgewise elbows IP55

Compliant with the IEC 60331

Canalis KTA 800 to 4000

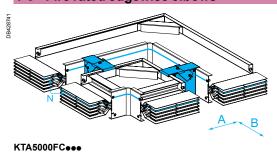
FC - Fire rated edgewise elbows



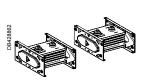
Туре	Cat. no.				
	3L + PE	3L + N + PE (2)	3L + N + PER (1)		
2 fixed branches	KTA•••FC3A	KTA•••FC4A	KTA•••FC5A		
1 made to measure short branche	KTA•••FC3B	KTA•••FC4B	KTA•••FC5B		
1 made to measure long branche	KTA•••FC3D	KTA•••FC4D	KTA•••FC5D		
2 made to measure branches	KTA•••FC3E	KTA•••FC4E	KTA•••FC5E		

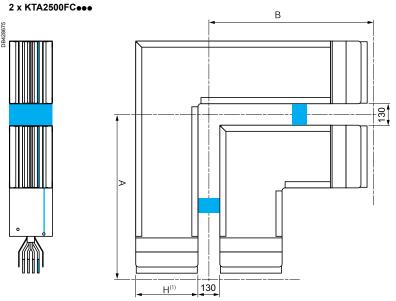
(1) To order the 3L+N+PER version with reinforced Isc, replace KTA••••FC5• by KTA••••FC7•.

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lcc, replace KTA2500FC4• by KTA2500FC6• and KTA3200FC4• by KTA3200FC6•.


KTA••••FC••

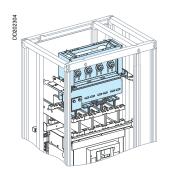
(1) See the "Trunking cross-section" table page 67 and dimensions page 66.


Canalis KTA 5000

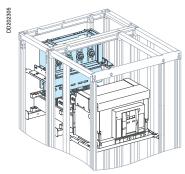

FC - Fire rated edgewise elbows

Туре	Cat. no. (2)				
	3L + PE	3L + N + PE	3L + N + PER (1)		
2 fixed branches	KTA5000FC3A	KTA5000FC4A	KTA5000FC5A		
1 made to measure short branche	KTA5000FC3B	KTA5000FC4B	KTA5000FC5B		
(1) To order the 31 +N+PEP version with reinforced lsc replace KTA5000EC5. by					

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000FC5• by KTA5000FC7•.



(1) See the "Trunking cross-section" table page 67 and dimensions page 66.


Canalis interfaces for Prisma P LV switchboard

Canalis KTA 800 to 4000

Interfaces for Masterpact NW circuit breakers

Top direct connection

Rear connection

Interfaces can be ordered by 2 channels:

- as a Canalis KT product, in this case use the reference in this catalogue eg. KTB04715
- as a Prisma or Okken product, in this case remove the radical **KTB** to find the correct reference eg.**04715**.

All accessories are only available as Prisma or Okken references.

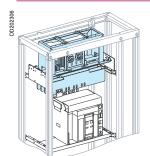
All mounting instruction or other documents will be found by using the reference without $\mbox{\bf KTB}$ radical.

Circuit	Type of	Canalis	No. of poles	Conne	ction	Cat. no.
breaker	circuit breaker	polarity	of circuit breaker	Top direct	Rear	_
NW08/16	Fixed or	3L+PE	3P			KTB04715
	drawout	3L+N+PE	4P	•	•	KTB04716
	3L+N+PER	4P			KTB04716+KTB0164PE1	
NW20/25	Fixed or	3L+PE	3P	•		KTB04725
	drawout	3L+N+PE	4P			KTB04726
		3L+N+PER	4P			KTB04726+KTB0244PE1
NW32	Fixed or	3L+PE	3P	•	•	KTB04735
	drawout	3L+N+PE	4P	•		KTB04736
		3L+N+PER	4P	•	•	KTB04736+KTB0404PE1
NW40 Fixed	Fixed or	3L+PE	3P		•	KTB04737
	drawout	3L+N+PE	4P		•	KTB04738
		3L+N+PER	4P			KTB04738+KTB0404PE1

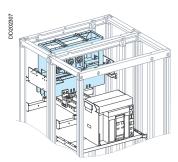
For the position in the switchboard, see the "Installation guide".

Number of modules required in the switchboard

Circuit breaker	Connection	Type of circuit breaker	Number of vertical modules ⁽¹⁾	
NW08/16	Top direct Fixed or drawout		27	
	Rear	Fixed	16	
		Drawout	17	
NW20/32	Top direct	Fixed or drawout	28	
	Rear	Fixed	16	
		Drawout	17	
NW40	Rear	Fixed or drawout	36	


(1) 1 module = 50 mm.

Catalogue numbers and dimensions


Canalis interfaces for Prisma P LV switchboard

Canalis KTA 800 to 4000

Interfaces for Masterpact NT and Compact NS circuit breakers

Top direct connection

Rear connection

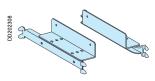
Masterpact NT

Circuit	Type of	polarity	No. of poles of circuit breaker	Connection		Cat. no.
breaker	circuit breaker			Top direct	Rear	
NT06/12	NT06/12 Fixed or drawout	3L+PE	3P			KTB04703
		3L+N+PE	4P	•	•	KTB04704
		3L+N+PER	4P	•		KTB04704+KTB0164PE1
NT16	Fixed or	3L+PE	3P			KTB04703
drawout	3L+N+PE	4P		•	KTB04704	
		3L+N+PER	4P		•	KTB04704+KTB0164PE1

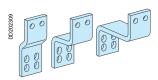
For the position in the switchboard, see the "Installation guide".

Compact NS

Circuit	Type of	Canalis	No. of poles	es Connection		Cat. no.
breaker	circuit breaker		of circuit breaker	Top direct	Rear	
NS630b/	NS630b/ Fixed or drawout	3L+PE	3P			KTB04703
1250		3L+N+PE	4P	•		KTB04704
		3L+N+PER	4P		•	KTB04704+KTB0164PE1
NS1600	Fixed or	3L+PE	3P			KTB04703
draw	drawout	3L+N+PE	4P			KTB04704
		3L+N+PER	4P		•	KTB04704+KTB0164PE1


For the position in the switchboard, see the "Installation guide".

Number of modules required in the switchboard


Circuit breaker	Connection	Type of circuit breaker	Number of vertical modules ⁽¹⁾	
NT06/12	Top direct	Fixed	17	
NS630b/1250		Drawout	18	
	Rear	Fixed or drawout	16	
NT16 NS1600	Rear	Fixed or drawout	16	

(1) 1 module = 50 mm.

Interface supports and protection covers

03561

Masterpact NW

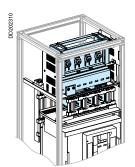
Circuit breaker	Type of circuit breaker	Connection	Supports	Terminal extension bar supports	Cover
NW08/32	Fixed or	Top direct	03561	3 x 04694	04871 + 04861
	drawout	Rear	03561	2 x 04694	04871 + 04863
NW40	Fixed or	Top direct	03561	-	04871 + 04861
	drawout	Rear	03561	-	04871 + 04863

Masterpact NT

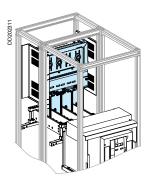
Circuit breaker	Type of circuit breaker	Canalis polarity	Connection	Supports	Canalis/ circuit breaker connection	Cover
NT06/12	Fixed or		Top direct	03561	04712	04871 + 04852
	drawout		Rear	03561	04713	04871 + 04853
		4P	Top direct	03561	04712	04871 + 04852
			Rear	03561	04714	04871 + 04853
NT16	Fixed or	3P	Rear	03561	04713	04871 + 04854
	drawout	drawout	4P	Rear	03561	04714

Compact NS

Circuit breaker	Type of circuit breaker	Canalis polarity	Connection	Supports	Canalis/ circuit breaker connection	Cover
NS630b/ 1250	Fixed	3P	Top direct	03561	04712	04871 + 04851
			Rear	03561	04713	04871 + 04853
		4P	Top direct	03561	04712	04871 + 04851
			Rear	03561	04714	04871 + 04853
	Drawout	wout 3P4P	Top direct	03561	04711	04871 + 04852
			Rear	03561	04713	04871 + 04854
			Top direct	03561	04712	04871 + 04852
			Rear	03561	04714	04871 + 04854
NS1600	Fixed	3P	Rear	03561	04713	04871 + 04853
		4P	Rear	03561	04714	04871 + 04853
	Drawout	3P	Rear	03561	04713	04871 + 04854
		4P	Rear	03561	04714	04871 + 04854


Arc-chute covers

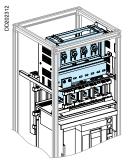
Circuit breaker	Type of circuit breaker	Canalis polarity	Cat. no.
Masterpact NT	Fixed	3P	47335
		4P	47336
Compact NS	Fixed	3P	33596
		4P	33597


Canalis interfaces for Okken LV switchboard

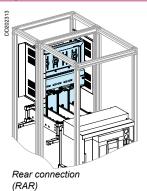
Canalis KTA 800 to 4000

Interfaces for Masterpact NW circuit breakers

Top direct connection (RDH)


Rear connection (RAR)

Fitting the interface does not change switchboard modularity as fixed by the devices.


Circuit	Type of	Canalis	No. of poles	Conne	ction	Cat. no.
breaker	circuit breaker	polarity	of circuit breaker	Top direct	Rear	_
NW08/16	Drawout	3L+PE	3P			KTB87811
					•	KTB87821
		3L+N+PE	4P	-		KTB87812
					•	KTB87822
		3L+N+PER	4P	•		KTB87812+KTB0164PE1
					•	KTB87822+KTB0164PE1
NW20/25	Drawout	3L+PE	3P	•		KTB87813
					•	KTB87823
		3L+N+PE	4P	•		KTB87814
					•	KTB87824
		3L+N+PER	4P	-		KTB87814+KTB0244PE1
					•	KTB87824+KTB0244PE1
NW32	Drawout	3L+PE	3P			KTB87815
					•	KTB87825
		3L+N+PE	4P	-		KTB87816
					•	KTB87826
		3L+N+PER	4P			KTB87816+KTB0404PE1
					•	KTB87826+KTB0404PE1
NW40	Drawout	3L+PE	3P			KTB87817
					•	KTB87827
		3L+N+PE	4P			KTB87818
					•	KTB87828
		3L+N+PER	4P	•		KTB87818+KTB0404PE1
					•	KTB87828+KTB0404PE1

For the position in the switchboard, see the "Installation guide".

Interfaces for Masterpact NT circuit breakers

Top direct connection (RDH)

Fitting the interface does not change switchboard modularity as fixed by the devices.

Circuit	Type of	Canalis	No. of poles	Connection		Cat. no.
	circuit breaker		of circuit breaker	Top direct	Rear	
NT08/16	Drawout	3L+PE 3P		•		KTB87811
						KTB87821
		3L+N+PE	4P			KTB87812
						KTB87822
		3L+N+PER	4P	•		KTB87812+KTB0164PE1
					•	KTB87822+KTB0164PE1

For the position in the switchboard, see the "Installation guide".

Interface supports

Circuit breaker	Type of circuit breaker	Connection	Cat. no.
NW08/40 NT08/16	Drawout	Top direct	87800
NW08/32 ⁽¹⁾ NT08/16	Drawout	Rear	87801

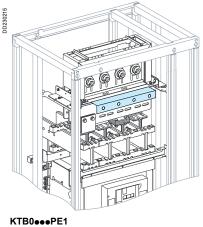
(1) For rear connection of the interface to a Masterpact NW40 circuit breaker, the supports are supplied with the interface.

Designation	Cat. no.
Special tightening wrench bit	87808

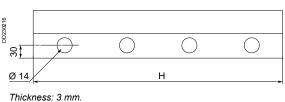
- For 2 superimposed 120x10 bars.
- This tool is essential to tighten the conversion modules on the junction block's spreaders. It is fitted on a torque wrench.

Sealing kits IP55

Canalis KTA 800 to 4000


TT - Sealing kits for switchboard and Trihal transformer roofs with interface

Rating of the trunking (A)	Height H of the trunking (mm)	Cat. no.
800	74	KTB0074TT01
1000	104	KTB0104TT01
1250	124	KTB0124TT01
1600	164	KTB0164TT01
2000	204	KTB0204TT01
2500	244	KTB0244TT01
3200	324	KTB0324TT01
4000	404	KTB0404TT01
	trunking (A) 800 1000 1250 1600 2000 2500 3200	trunking (A) trunking (mm) 800 74 1000 104 1250 124 1600 164 2000 204 2500 244 3200 324


KTB0●●●TT01

PE - Reinforced protective earth (PER) for Prisma P and Okken interfaces

Height "H" (mm)	Number of holes	Cat.no.
160	2	KTB0164PE1
240	3	KTB0244PE1
400	4	KTB0404PE1

KTB0●●PE1

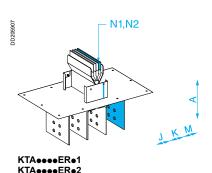
79

Catalogue numbers and dimensions

Feed units for switchboards and oil immersed transformers IP55

Canalis KTA 800 to 4000

Ordering


Complete the catalogue number by replacing "••••" by the rating. Important:

- in the catalogue number for the 800 A rating, add a "0": KTA0800
- add the dimensions of the selected unit as a technical comment.

Example: the catalogue number of a 1250 A made to measure end feed unit, N2, 3L + N + PE, 235 mm long and with between centres J, K and M = 170 mm, is: KTA1250ER42, A = 235, J = 170, K = 170 and M = 170.

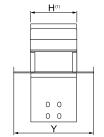
Rating

ER•1, ER•2 - Straight feed units

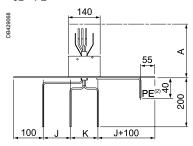
Туре	Position of	Cat. no.		
	neutral	3L + PE	3L + N + PE (2)	3L + N + PER (1)
Fixed	N1	KTA••••ER31	KTA•••ER41	KTA••••ER51
Made to measure	N2	KTA••••ER32	KTA••••ER42	KTA••••ER52

(1) To order the 3L+N+PER version with reinforced Isc, replace KTA••••ER5• by KTA••••ER7•.

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced Isc, replace KTA2500ER4• by KTA2500ER6• and KTA3200ER4• by KTA3200ER6•.


PE 3 4

100


These end feed units are supplied with a connection kit to create a PEN if needed.

KTA••••ER•1, KTA••••ER•2 3L + N + PE or PER

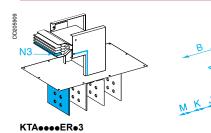
140 DD210832 55

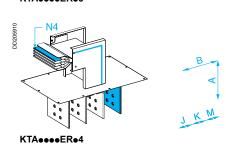
100 3L + PE

(1) See the "Trunking cross-section" table in the following page.

(2) PE drilled diameter = 14 mm pour cables with crimped lugs.

Table of dimensions

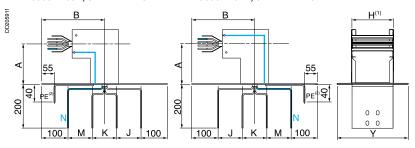

Rating (A)	Neutral	Dimensions (mm)			
		Α	J, K, M	Υ	
800 ⁽³⁾ to	N1	235	115	230	
1250	N2	235 to 734	80 to 250	230	
1600 to	N1	235	115	350	
2500	N2	235 to 734	80 to 250	350	
3200 to	N1	235	115	510	
4000	N2	235 to 734	80 to 250	510	


(3) For the 800 A rating, indicate "KTA0800".

Dimensions of connection pads

Rating (A)	800	1000	1250	1600	2000	2500	3200	4000	5000
Drilling for connection (mm) Thickness of conductor = 6 mm.	25,	25	25 1	25.4 99	25	25,00	25 011	14x20 25 90 90 90 90	70 25 134 25 70 50 70 25
	50 50	\$2 05 \$2 05 \$2 05 \$2 05	\$6.00	50	50	02 50	50 10 10	50	

ERe3, ERe4 - Flat elbow feed units



Туре	Position of			
	neutral	3L + PE	3L + N + PE (2)	3L + N + PER (1)
Made to measure	N3	KTA•••ER33	KTA•••ER43	KTA•••ER53
	N/4	KTA • • • • ER34	KTA	KTA • • • • ER54

(1) To order the 3L+N+PER version with reinforced Isc, replace KTA••••ER5• by KTA••••ER7•.

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced Isc, replace KTA2500ER4• by KTA2500ER6• and KTA3200ER4• by KTA3200ER6•.

KTA••••ER•3(3), 3L + N + PE or PER KTA••••ER•4(3), 3L + N + PE or PER

(1) See the "Trunking cross-section" table below.
(2) PE drilled diameter = 14 mm pour cables with crimped lugs.
(3) 3L + PE version, see page 80.

These end feed units are supplied with a connection kit to create a PEN if needed.

Tableau of dimensions

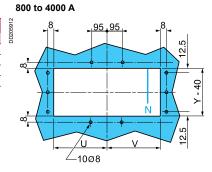
Rating (A)	Neutral	Dimensions	Dimensions (mm)					
		Α	В	J, K, M	Υ			
800 ⁽⁴⁾ to 1250	N3, N4	200 to 534	300	80 to 250	230			
1600 to 2500	N3, N4	200 to 534	300	80 to 250	350			
3200 to 4000	N3, N4	200 to 534	300	80 to 250	510			

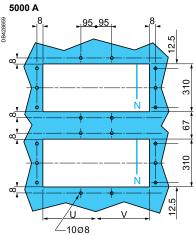
(4) For the 800 A rating, indicate "KTA0800".

Cut-out drawing for feed units placed directly on the device roof

140

140


140


Table of dimensions

Rating (A)	Dimer	Dimensions (mm)				
	Υ	U	٧			
800 ⁽¹⁾ to 1250	230	K/2 + J + 80	K/2 + M + 80			
1600 to 2500	350	K/2 + J + 80	K/2 + M + 80			
3200 to 4000	510	K/2 + J + 80	K/2 + M + 80			
5000	350	K/2 + J + 80	K/2 + M + 80			

(1) For the 800 A rating, indicate "KTA0800".

For the 3L + PE version, consider M = J to calculate the Y quotation.

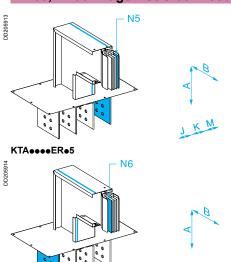
Veight (kg/m) 3L + PE									0.00	
Trunking cr	oss-section									
Rating (A)		800(1)	1000	1250	1600	2000	2500	3200	4000	5000
Weight (kg/m)	3L + PE	12	14	16	19	22	25	31	38	50
	3L + N + PE	13	16	18	22	26	30	37	45	60
	3L + N + PER	15	19	21	26	31	36	46	56	72
Height H (mm) Width W (mm)		1	-	15 <u>1</u>	167	204	244	324	404	244 130 244

140

140

140

140


140

Catalogue numbers and dimensions

Feed units for switchboards and oil immersed transformers IP55

Canalis KTA 800 to 4000

ER•5, ER•6 - Edgewise elbow feed units

Туре	Position of	Cat. no.					
	neutral	3L + PE	3L + N + PE (2)	3L + N + PER (1)			
Made to measure	N5	KTA••••ER35	KTA•••ER45	KTA••••ER55			
	N6	KTA••••ER36	KTA••••ER46	KTA••••ER56			

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••ER5• by KTA••••ER7•.

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500ER4• by KTA2500ER6• and KTA3200ER4• by KTA3200ER6•.

KTA••••ER•5(3), 3L + N + PE or PER KTA••••ER•6(3), 3L + N + PE or PER

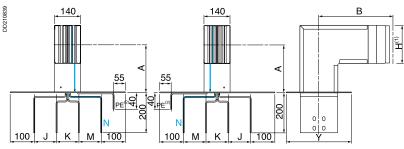
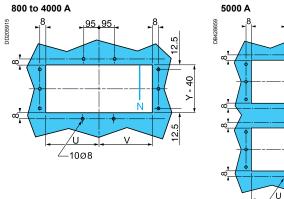


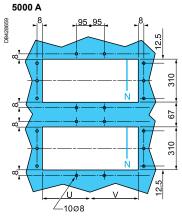
Table of dimensions

Rating	Neutral	Dimensions	s (mm)		
(A)		Α	В	J, K, M	Υ
800(4)	N5, N6	175 to 509	275	80 to 250	230
1000	N5, N6	190 to 524	290	80 to 250	230
1250	N5, N6	200 to 534	300	80 to 250	230
1600	N5, N6	220 to 554	320	80 to 250	350
2000	N5, N6	240 to 574	340	80 to 250	350
2500	N5, N6	260 to 594	360	80 to 250	350
3200	N5, N6	300 to 634	400	80 to 250	510
4000	N5, N6	340 to 674	440	80 to 250	510

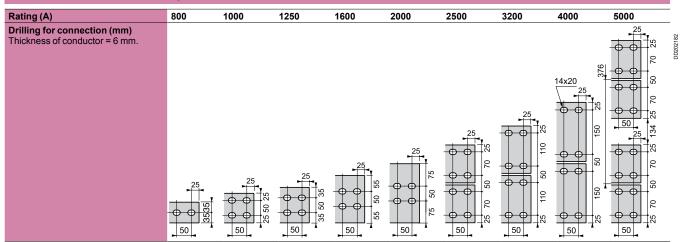
(1) See the "Trunking cross-section" table opposite.(2) PE drilled diameter = 14 mm pour cables with crimped lugs. (3) 3L + PE version, see (4) For the 800 A rating, indicate "KTA0800".

Cut-out drawing for feed units placed directly on the device

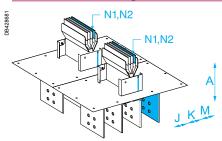

Table of dimensions


KTA••••ER•6

Rating (A)	Dimension	ns (mm)	
	Υ	U	V
800 ⁽¹⁾ to 1250	230	K/2 + J + 80	K/2 + M + 80
1600 to 2500	350	K/2 + J + 80	K/2 + M + 80
3200 to 4000	510	K/2 + J + 80	K/2 + M + 80
5000	350	K/2 + J + 80	K/2 + M + 80

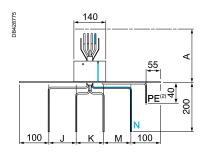

(1) For the 800 A rating, indicate "KTA0800".

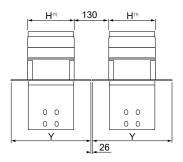
For the 3L + PE version, consider M = J to calculate the Y quotation.



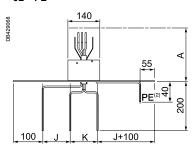
Dimensions of connection pads

ER●1, ER●2 - Straight feed units




KTA5000ER●1 KTA5000ER●2

Туре	Position of	Cat. no.		
	neutral	3L + PE	3L + N + PE	3L + N + PER (1)
Fixed	N1	KTA5000ER31	KTA5000ER41	KTA5000ER51
Made to measure	N2	KTA5000ER32	KTA5000ER42	KTA5000ER52

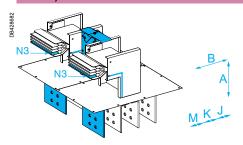

(1) To order the 3L+N+PER version with reinforced lcc, replace KTA5000ER5• by KTA5000ER7•.

KTA5000ER•1, KTA5000ER•2 3L + N + PE or PER

3L + PE

- (1) See the "Trunking cross-section" table page 86.(2) PE drilled diameter = 14 mm pour cables with crimped lugs.

Table of dimensions

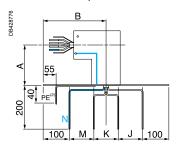

Rating (A)	Neutral	Dimensions (mm)			
		Α	J, K, M	Υ	
5000	N1	235	115	350	
	N2	235 to 734	80 to 250	350	

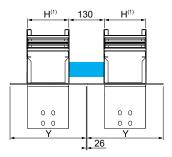
Catalogue numbers and dimensions

Feed units for switchboards and oil immersed transformers IP55

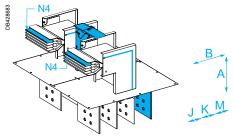
Canalis KTA 5000

ER•3, ER•4 - Flat elbow feed units

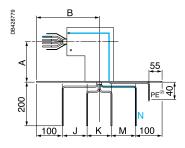



KTA5000ER•3

Туре	Position of	3L + PE 3L +		
	neutral	3L + PE	3L + N + PE	3L + N + PER (1)
Made to measure	N3	KTA5000ER33	KTA5000ER43	KTA5000ER53
	N4	KTA5000ER34	KTA5000ER44	KTA5000ER54

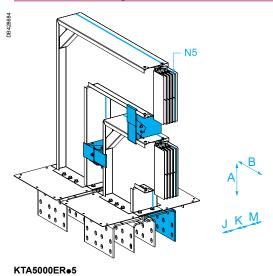

(1) To order the 3L+N+PER version with reinforced lcc, replace KTA5000ER5● by KTA5000ER7●.

KTA5000ER•3 (3), 3L + N + PE or PER



KTA5000ER•4 (3), 3L + N + PE or PER

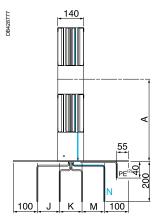
KTA5000ER●4

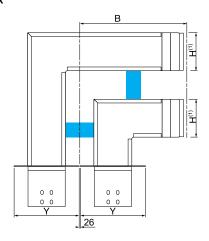


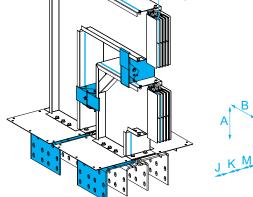
- (1) See the "Trunking cross-section" table page 86.
 (2) PE drilled diameter = 14 mm pour cables with crimped lugs.
 (3) 3L + PE version, see page 80.

Tableau of dimensions

Rating (A)	Neutral	Dimensions	(mm)			
		Α	В	J, K, M	Υ	
5000	N3, N4	200 to 534	300	80 to 250	350	

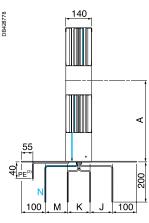

ER•5, ER•6 - Edgewise elbow feed units




Туре	Position of				
	neutral	3L + PE	3L + N + PE	3L + N + PER (1)	
Made to measure	N5	KTA5000ER35	KTA5000ER45	KTA5000ER55	
	N6	KTA5000ER36	KTA5000ER46	KTA5000ER56	

(1) To order the 3L+N+PER version with reinforced lcc, replace KTA5000ER5• by KTA5000ER7•.

KTA5000ER•5 (3), 3L + N + PE or PER

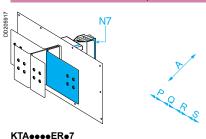


KTA5000ER●6

KTA5000ER•6 (3), 3L + N + PE or PER

- (1) See the "Trunking cross-section" table page 86.
 (2) PE drilled diameter = 14 mm pour cables with crimped lugs.
 (3) 3L + PE version, see page 80.

Table of dimensions

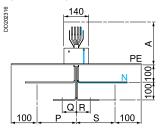

Rating (A)	Neutral	Dimensions (mm)				
		Α	В	J, K, M	Υ	
5000	N3, N4	448 to 782	548	80 to 250	350	

Catalogue numbers and dimensions

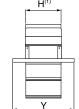
Feed units for switchboards and oil immersed transformers **IP55**

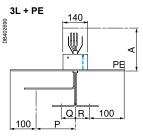
Canalis KTA 800 to 4000

ER•7 - Bar feed units, flat outlets


Cat. no. (3) 3L + PE 3L + N + PE (2) KTA••••ER47 KTA • • • • ER37 KTA•••ER57 Made to measure


(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••ER57 by KTA••••ER77.


(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500ER4• by KTA2500ER6• and KTA3200ER4• by KTA3200ER6•.
(3) Not available for KTA5000.


Connection pad dimensions are identical to those of the feed units. These end feed units are supplied with a connection kit to create a PEN if needed.

KTA••••ER•7 3L + N + PE or PER

(1) See the "Trunking cross-section" table below.

Table of dimensions

Rating (A)	Dimension	Dimensions (mm)				
	Α	P-Q	S-R or R-S	Q, R, S minimum	Υ	
800 ⁽²⁾ to 1250	235 to 734	160 to 600	160 to 600	80	230	
1600 to 2500	235 to 734	160 to 600	160 to 600	80	350	
3200 to 4000	235 to 734	160 to 600	160 to 600	80	510	
(2) For the 800	A rating, in	dicate "KTA	0800".			

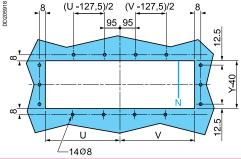

Cut-out drawing for straight feed units connected directly to the device

Table of dimensions

Rating (A)	Dimer	Dimensions (mm)			
	Υ	U	V		
800 ⁽¹⁾ to 1250	230		if S > R, V = S + 80		
1600 to 2500	350	U = P + 80	if R > S. V = R + 80		
3200 to 4000	510		II K > 3, V = K + 60		

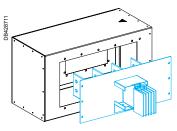
(1) For the 800 A rating, indicate "KTA0800".

For the 3L + PE version, consider S = 0 to calculate the V quotation.

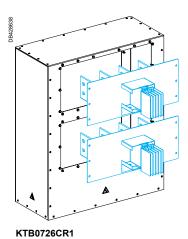
Trunking cross-section Rating (A) 800(1) 1000 1250 1600 2000 2500 3200 4000 5000 Weight (kg/m) 3L + PE 12 14 16 19 22 25 31 38 50 3L + N + PE 13 16 18 22 26 30 60 37 45 3L + N + PER 46 15 19 21 26 31 36 56 72 Height H (mm) Width W (mm) $W_{\underline{}}$ 140 140 140 140 140 140 140 140 140

Rigid protective covers

Canalis KTA 800 to 5000


Ordering

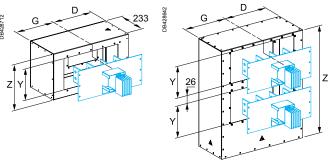
To order a protective cover onto which a feed connector is fitted, the parameters D, G and Z, which depend on the feed connector, must be given.


Example: the catalogue number of a rigid vertical protective cover with dimension Y = 350 mm intended for a feed unit with different between centre dimensions D, G and Z (in mm) is:

KTB0350CR2, D = 330, G = 450 and Z = 500.

CR1 - Rigid horizontal protective covers for feed units ER N1 to N7

KTB•••CR1



Important: when ordering a horizontal cover, make sure you indicate dimensions "D, G and Z" with the catalogue number.

Rating (A)	Dimensions "Y" (mm)	Cat. no.	Weight (kg)
800 to 1250	230	KTB0230CR1	12.00
1600 to 2500	350	KTB0350CR1	12.00
3200 to 4000	510	KTB0510CR1	12.00
5000	350	KTB0726CR1	60.00

KTB0726CR1

Protective cover for ER N1 to N6 straight end feed connectors

Dimensions \boldsymbol{D} and \boldsymbol{G} are determined by the between centres dimensions (J, K and M) of the end feed connector bars to be protected.

The position of the neutral on the feed connector also determines the rule to be used for calculating parameters D and G

If the feed connector comes into the cover with the neutral on the right:

D = K/2 + M + 100G = K/2 + J + 100

If the feed connector comes into the cover with the neutral on the left:

G = K/2 + M + 100

For the 3L + PE version, consider M = J to calculate the D and G quotations.

Table of dimensions

Rating (A) Dimensions (mm)								
	Υ	Y D G Z						
800 to 1250	230	220 to 475	220 to 475	310 to 800				
1600 to 2500	350	220 to 475	220 to 475	430 to 800				
3200 to 4000	510	220 to 475	220 to 475	590 to 800				
5000	726	220 to 475	220 to 475	790 to 1200				

Protective cover for ER N7 straight end feed connectors

Dimensions **D** and **G** are determined by the between centres dimensions (P, Q, R and S) of the end feed connector bars to be protected.

Position of the neutral on the feed connector also determines the rule to be used for calculating parameters D and G.

If the feed connector comes into the cover with the neutral on the right:

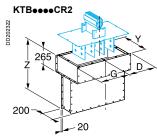
D = max(R; S) + 100G = max(P; Q) + 100

If the feed connector comes into the cover with the neutral on the left: D = max(P; Q) + 100 G = max(R; S) + 100

For the 3L + PE version, consider S = 0 to calculate the D and G quotations.

Table of dimensions

Rating (A)	Dimension	ns (mm)		
	Υ	D	G	Z
800 to 1250	230	340 to 1000	340 to 1000	310 to 800
1600 to 2500	350	340 to 1000	340 to 1000	430 to 800
3200 to 4000	510	340 to 1000	340 to 1000	590 to 800


88

CR2, CR3 - Rigid vertical protective covers for feed units ER N1 to N7

 $\label{lem:lemportant: when ordering a vertical cover, make sure you indicate dimensions "D, G and Z" with the catalogue number.$

Dimensions "Y" (mm)	Cat. no.	Weight (kg)
230	KTB0230CR2	40.00
350	KTB0350CR2	40.00
510	KTB0510CR2	40.00
	230 350	230 KTB0230CR2 350 KTB0350CR2

Dimensions **D** and **G** are determined by the between centres dimensions (J, K and M) of the end feed connector bars to be protected.

D = K/2 + J + 100

G = K/2 + M + 100

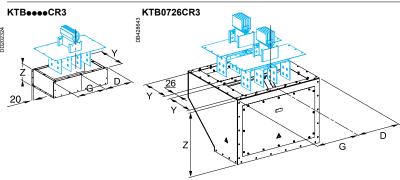

For the 3L + PE version, consider M = J to calculate the D and G quotations.

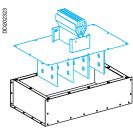
Table of dimensions for ER N1 to N6 straight feed units

Rating (A) Dimensions (mm)				
	Υ	D	G	Z
800 to 1250	230	220 to 475	220 to 475	400 to 800
1600 to 2500	350	220 to 475	220 to 475	400 to 800
3200 to 4000	510	220 to 475	220 to 475	400 to 800

Rating (A)	Dimensions "Y" (mm)	Cat. no.	Weight (kg)
800 to 1250	230	KTB0230CR3	17.00
1600 to 2500	350	KTB0350CR3	17.00
3200 to 4000	510	KTB0510CR3	17.00
5000	350	KTB0726CR3	60.00

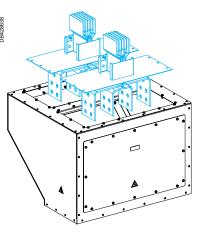
Dimensions ${\bf D}$ and ${\bf G}$ are determined by the between centres dimensions of the end feed connector bars to be protected.

Table of dimensions for ER N1 to N6 straight feed units


Rating (A)	Dimensio	Dimensions (mm)				
	Υ	D	G	Z		
800 to 1250	230	220 to 475	220 to 475	100 to 400		
1600 to 2500	350	220 to 475	220 to 475	100 to 400		
3200 to 4000	510	220 to 475	220 to 475	100 to 400		
5000	350	220 to 475	220 to 475	591 to 800		

D = K/2 + J + 100 G = K/2 + M + 100For the 3L + PE version, consider M = J to calculate the D and G quotations.

Table of dimensions for ER N7 straight feed units


Rating (A)	Dimensions (mm)				
	Υ	D	G	Z	
800 to 1250	230	220 to 475	220 to 475	100 to 400	
1600 to 2500	350	220 to 475	220 to 475	100 to 400	
3200 to 4000	510	220 to 475	220 to 475	100 to 400	

D = max (P; Q) + 100
G = max (R; S) + 100
For the 3L + PE version, consider S = 0 to calculate the D and G quotations.

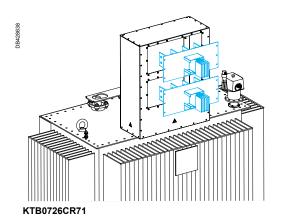
KTB•••CR3

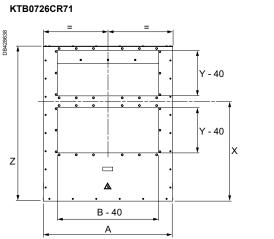
KTB••••CR2

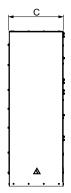
KTB0726CR3


Adjustable protective covers for Minera immersed transformers IP55

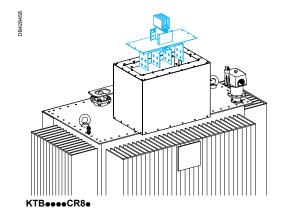
Canalis KTA 800 to 5000

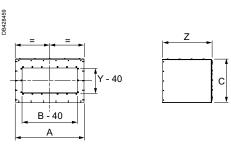

CR7 - Protective covers for horizontal incomers

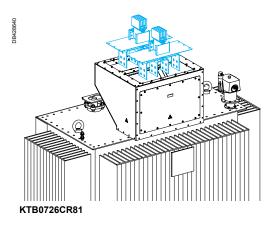

These covers are used to connect Canalis KT to Minera transformers. Dimensions are predefined to match with transformer ratings. Refer to the selection guide, see page 248.


Cat. no.	Y (mm)	Z (mm)	X (mm)	A (mm)	B (mm)	C (mm)	Weight (kg)
KTB0230CR71	230	450	320	780	650	256	30
KTB0350CR71	350	510	320	780	650	256	30
KTB0350CR72	350	540	350	780	650	256	30
KTB0350CR73	350	590	400	855	710	276	30
KTB0350CR74	350	590	400	855	710	359	30
KTB0510CR71	510	705	435	855	710	276	30
KTB0510CR72	510	740	470	855	710	359	30
KTB0510CR73	510	780	510	855	710	359	30
KTB0726CR71	350	1025	469	855	710	359	30

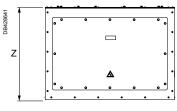
KTB••••CR7• Z B - 40

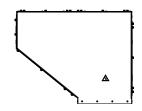


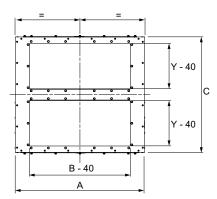

CR8 - Protective covers for vertical incomers


These covers are used to connect Canalis KT to Minera transformers. Dimensions are predefined to match with transformer ratings. Refer to the selection guide, page 250.

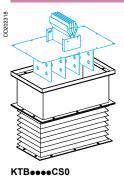
Cat. no.	Y (mm)	Z (mm)	A (mm)	B (mm)	C (mm)	Weight (kg)
KTB0230CR81	230	480	780	650	251	30
KTB0350CR81	350	580	780	650	380	30
KTB0350CR82	350	600	855	710	380	30
KTB0350CR83	350	520	855	710	380	30
KTB0510CR81	510	600	855	710	540	30
KTB0510CR82	510	615	855	710	540	30
KTB0726CR81	350	591	775	710	770	30




KTB••••CR8•

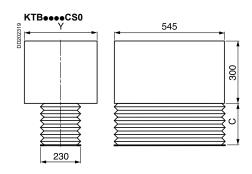


KTB0726CR81



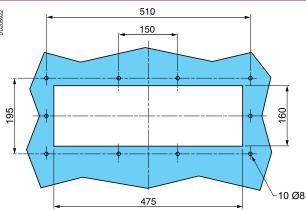
Flexible protective covers Cable boxes IP55

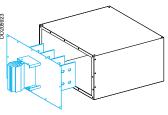
Canalis KTA 800 to 4000


CS - Flexible vertical protective covers for straight feed units

Covers for ER N1 to N7 straight feed units with **between centre dimensions = 115 mm**.

Rating (A)	Dimensions "Y" (mm)	Cat. no.	Weight (kg)
800 to 1250	230	KTB0230CS0	15.00
1600 to 2500	350	KTB0350CS0	17.00
3200 to 4000	510	KTB0510CS0	19.00

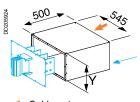

It is recommended to use insulating sheaths KTB0000YF1 with connection braids KTB0000YT1.


Table of dimensions

Rating (A)	Dimen	Dimensions (mm)			
	Y C				
800 to 1250	230	200 to 650			
1600 to 2500	350	200 to 650			
3200 to 4000	510	200 to 650			

Cut-out drawing for fixing the flexible vertical protective cover

BC - Cable boxes



KTB•••BC01

Rating (A)	Dimensions "Y" (mm)	Cat. no.	Weight (kg)
800 to 1250	230	KTB0230BC01	15.00
1600 to 2500	350	KTB0350BC01	17.00
3200 to 4000	510	KTB0510BC01	19.00

Cable boxes are only to be used on ER N1 to N6 straight feed units with standard between centre distances = 115 mm.

KTBeeeeBC01

Cable entry.

Aluminium plate to be drilled.

Table of dimensions

Rating (A)	Dimensions (mm)
	Υ
800 to 1250	230
1600 to 2500	350
3200 to 4000	510

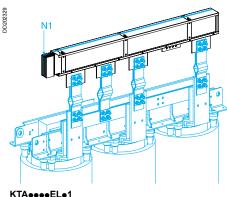
See table page 86 for connection pad dimensions.

Feed units for dry-type transformers **IP55**

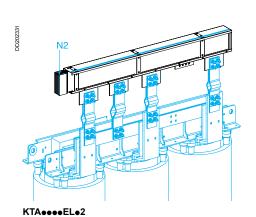
Canalis KTA 800 to 4000

Ordering

Complete the catalogue number by replacing "••••" by the rating. Important:


- in the catalogue number for the 800 A rating, add a "0": KTA0800
- add the dimensions of the selected unit as a technical comment.

Example: the catalogue number of a 3200 A end feed unit, N2, 3L + N + PER, with a between centre distance E = 550 mm, length N = 310 mm and phase order T = 3N21 is:


KTA3200EL72, E = 550 mm, N = 310 mm and T = 3.

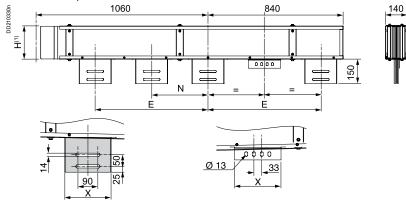
Rating

EL●1, EL●2 - N1 and N2 feed units for dry-type transformers

KTA • • • • EL • 1

Туре	Position of	Cat. no.				
	neutral	3L + PE	3L + N + PE (2)	3L + N + PER (1)		
Made to measure	N1	KTA••••EL31	KTA••••EL41	KTA•••EL51		
	N2	KTA••••EL32	KTA••••EL42	KTA•••EL52		

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••EL5• by KTA•••EL7•

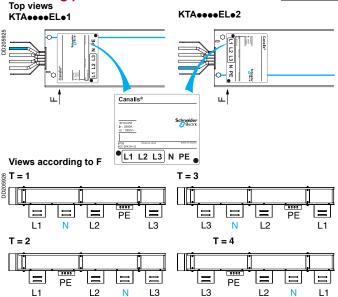

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500EL4• by KTA2500EL6• and KTA3200EL4• by KTA3200EL6•.

For an installation with flat mounted busbar trunking, add angle brackets between the transformer and the feed unit, see page 98.

For fixing supports, see KTB ••••ZA page 110.

These end feed units are supplied without PEN connection kit.

KTA••••EL•1, KTA••••EL•2


(1) See the "Trunking cross-section" table page 101.

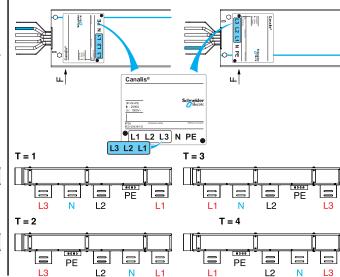
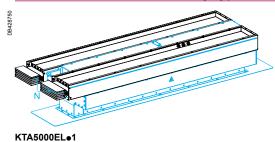

KTA • • • • EL • 1

Table of dimensions

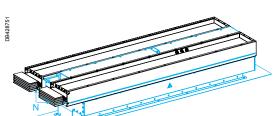
Rating (A)	Neutral	Dimensions (mm)				
		E	N	X		
800 to 1250	N1, N2	390 to 700	195 to E - 195	160		
1600 to 4000	N1, N2	470 to 700	235 to E - 235	200		

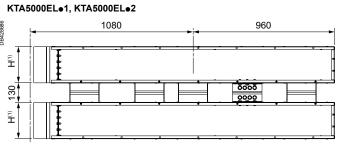
Selecting phase order T



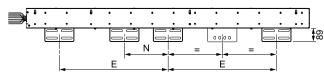
KTA • • • • EL • 2

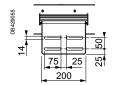
KTA5000EL•2

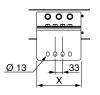

EL●1, EL●2 - Feed units for dry-type transformers

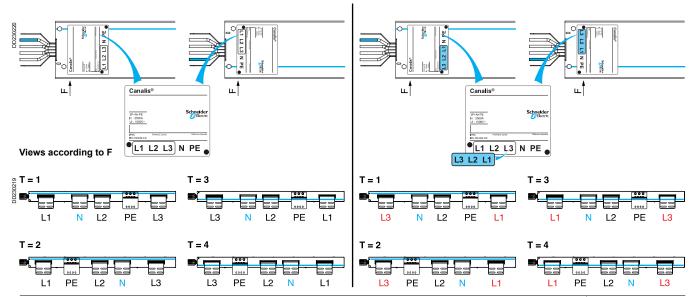


Туре	Position of	Cat. no.		
	neutral	3L + PE	3L + N + PE	3L + N + PER (1)
Made to measure	N1	KTA5000EL31	KTA5000EL41	KTA5000EL51
	N2	KTA5000EL32	KTA5000EL42	KTA5000EL52


(1) To order the 3L+N+PER version with reinforced lsc, replace KTA5000EL5● by KTA5000EL7●.


For an installation with flat mounted busbar trunking, add angle brackets between the transformer and the feed unit, see page 98. For fixing supports, see KTB••••ZA4 page 110.

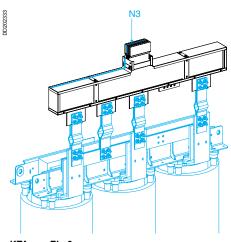




(1) See the "Trunking cross-section" table page 101.

Table of dimensions

Rating (A)	Neutral	Dimensions (mm)					
		E	N	Х			
5000	N1. N2	470 to 736	235 to E - 235	200			


Selecting phase order T

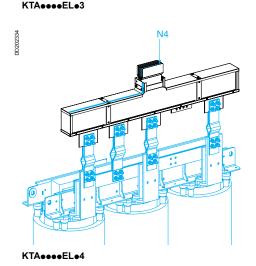
Feed units for dry-type transformers **IP55**

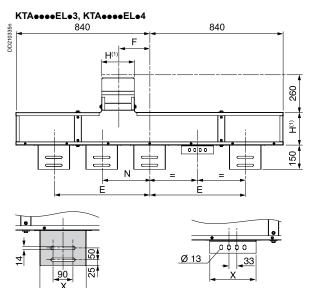
Canalis KTA 800 to 4000

EL-3, EL-4 - N3 and N4 feed units for dry-type transformers

DD 202333	N3	
KTA El -	.9	

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••EL5• by KTA•••EL7•

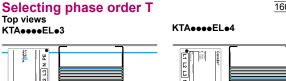

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500EL4● by KTA2500EL6● and KTA3200EL4● by KTA3200EL6●.

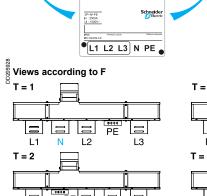

For an installation with flat mounted busbar trunking, add angle brackets between the transformer and the feed unit, see page 98.

140

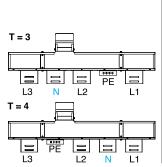
For fixing supports, see KTB •••• ZA4 page 110.

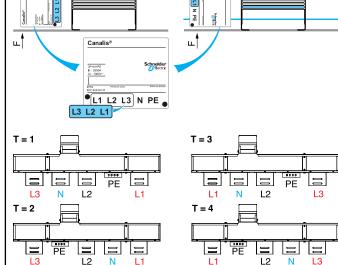
These end feed units are supplied without PEN connection kit.



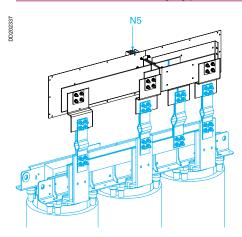

(1) See the "Trunking cross-section" table page 101.

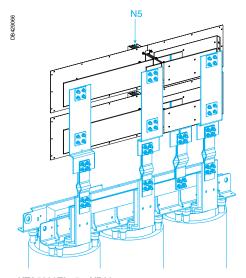
KTA • • • • EL • 3


Table of dimensions


Rating					
(A)		E	N	F	X
800 to 1250	N3, N4	390 to 700	195 to E - 195	0 to 200	160
1600 to 4000	N3, N4	470 to 700	235 to E - 235	0 to 200	200

Canalis



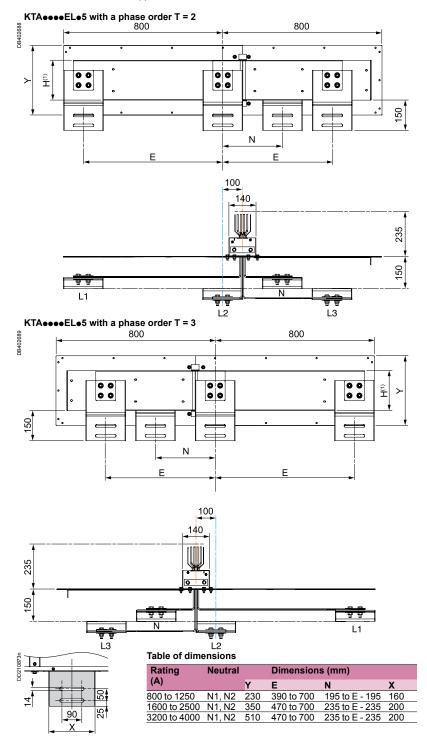

KTA••••EL•4

щŤ

EL•5 - Feed units for dry-type transformers

KTA • • • • EL • 5

KTA5000EL•5 + YP23 For YP23 see page 108.

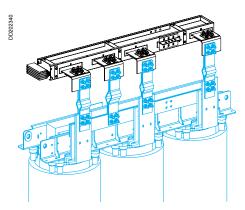

Туре	Position of	Cat. no. (3)				
	neutral	3L + PE	3L + N + PE (2)	3L + N + PER (1)		
Made to measure	N5	KTA•••EL35	KTA••••EL45	KTA••••EL55		

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••EL55 by KTA••••EL75.

(2) To order the 3L+N+PE 2500 A and 3200 A version with reinforced lsc, replace KTA2500EL4• by KTA2500EL6• and KTA3200EL4• by KTA3200EL6•.
(3) References KTA5000EL•5 are made of 2 references KTA2500EL•5.

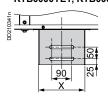
For an installation with flat mounted busbar trunking, add angle brackets between the transformer and the feed unit, see page 98.

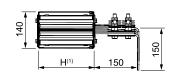
These end feed units are supplied without PEN connection kit.

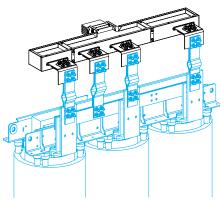


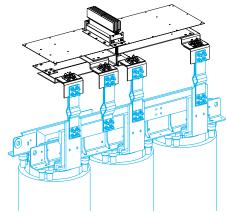
(1) See the "Trunking cross-section" table page 101. Important: the above designs and markings correspond to a phase order of N321, joint block side. If the phase order on the joint block side is N123, inverse markings L1 and L3 on the transformer side.

Feed units for dry-type transformers IP55


Canalis KTA 800 to 4000


YE - Angle brackets for installing N1 to N5 feed units flat



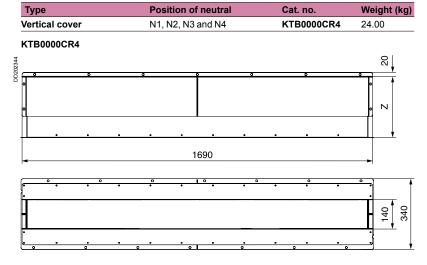

Description	Rating (A)	Phase width "X" (mm)	Cat. no.
4 angle brackets	800 to 1250	160	KTB0000YE1
+ screws	1600 to 4000	200	KTB0000YE2

KTB0000YE1, KTB0000YE2

KTB0000YE1, KTB0000YE2

Protective covers for dry-type transformers


IP55


Canalis KTA 800 to 4000

Ordering

There is no need to add technical comments to the catalogue number ordered.

CR4 - Adjustable vertical protective covers for EL, N1 to N4 feed units, edgewise mounting

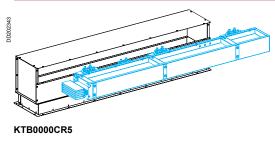


Table of dimensions

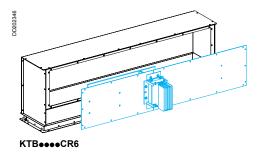
Rating (A)	Dimensions (mm)			
	Z Minimum	Maximum		
800 to 1250	200	350		
1600 to 2500	200	350		
3200 to 4000	200	350		

CR5 - Adjustable horizontal protective covers for EL, N1 to N4 feed units, flat mounting

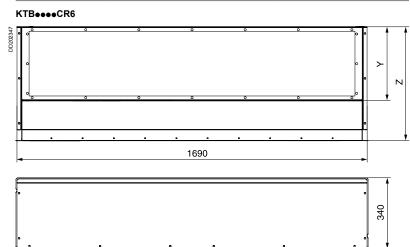
Type	Position of neutral	Cat. 110.	weight (kg)
Horizontal cover	N1, N2, N3 and N4	KTB0000CR5	32.00
KTB0000CR5			
0			041
-			° 2
•			
	1690	d H D	*
	0		
•			
			340
•		•	

Position of neutral

Table of dimensions


Rating (A)	Dimensions (mm)				
	Z Minimum	Maximum			
800 to 1250	330	480			
1600 to 2500	330	480			
3200 to 4000	330	480			

Catalogue numbers and dimensions


Protective covers for dry-type transformers IP55

Canalis KTA 800 to 4000

CR6 - Horizontal protective covers for dry-type transformer N5 feed units

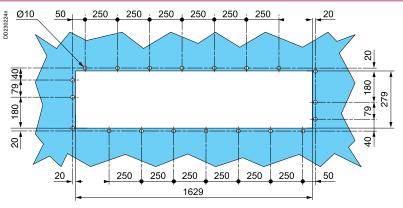
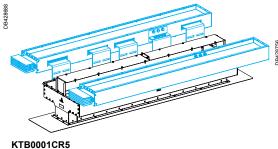
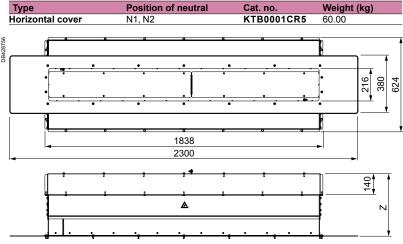

Туре	Position of neutral	Dimension "Y" (mm)	Cat. no.	Weight (kg)
Horizontal covers	N5	230	KTB0230CR6	38.00
		350	KTB0350CR6	40.00
		510	KTB0510CR6	47.00

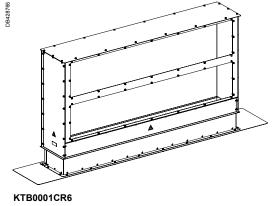
Table of dimensions

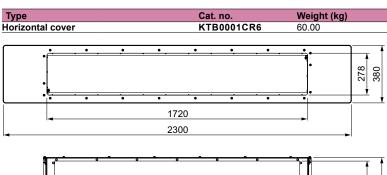

Rating (A)	Dimensions (mm)				
	Y	Z Minimum	Maximum		
800 to 1250	230	380	530		
1600 to 2500	350	500	650		
3200 to 4000	510	660	810		


Cut-out drawing for dry-type transformer feed units

View from the top of the transformer.

CR5 - Adjustable horizontal protective covers for EL, N1 and N2 feed units, flat mounting




Table of dimensions

Rating (A)	Dimensions Z (mm)				
	Minimum	Maximum			
5000	330	480			

See "Connection to Trihal cast resin transformers", page 239.

CR6 - Adjustable horizontal protective covers for EL, N1 and N2 feed units, flat mounting

	310	
		1030
<u>A</u>	=	
	•	_

Trunking cross-section

Rating (A)		800(1)	1000	1250	1600	2000	2500	3200	4000	5000
Weight (kg/m)	3L + PE	12	14	16	19	22	25	31	38	50
	3L + N + PE	13	16	18	22	26	30	37	45	60
	3L + N + PER	15	19	21	26	31	36	46	56	72

(1) Important: for the 800 A rating, indicate "KTA0800".

Connection accessories

Canalis KTA 800 to 5000

Ordering

To order YC1 or YC3 flexibles with customized drilled holes at the bottom. **Example:** total length = 565 mm with a pattern of 4 centred holes 50x50 at 25 mm

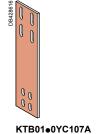
of the bottom.

KTB0100YC305B, L=565, A=50, B=25, C=25, D=50, E=2, F=2, Y=25.

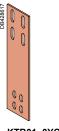
To order flexibles without drilled holes at the bottom.

Example: total length = 435 mm.

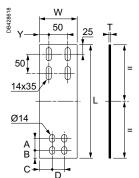
KTB0100YC305B, L=435, E=0, F=0, Y=25.


In all cases E, F and Y need to be filled.

YC1 - Connection plates

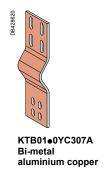

Туре	Surface treatment	"Width (mm) W"	"Depth (mm) T"	"Length (mm) L"	Cross-section (mm²)	Cat. no.	Weight (kg)
Made to	Bi-metal aluminium	100	7	300 to 600	700(1)	KTB0100YC107A	1.6
measure	copper	120	7	300 to 600	840(1)	KTB0120YC107A	1.9
	Bare copper	100	5	300 to 600	500 ⁽²⁾	KTB0100YC105B	2.7
		120	5	300 to 600	600 ⁽²⁾	KTB0120YC105B	3.2

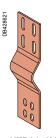
(1) Made of 5 sheets of 1.4 mm (16 % CU, 84 % AL).


(2) Made of 5 sheets 1 mm (100 % CU).

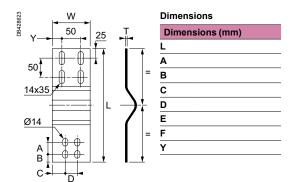
Bi-metal aluminium copper

KTB01e0YC105B Bare copper


יוווים	ensions	
Dim	ensions (mm)	
L		
Α		
В		
С		
D		
E		
F		

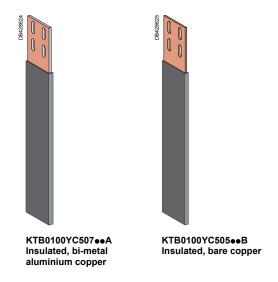

- E = number of vertical holes (bottom pattern)
- F = number of horizontal holes (bottom pattern)

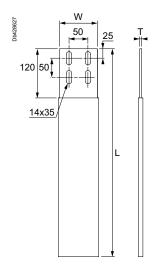
YC3 - Connection flexible links with onde


Туре	Surface treatment	"Width (mm) W"	"Depth (mm) T"	"Length (mm) L"	Cross-section (mm²)	Cat. no.	Weight (kg)
Made to	Bi-metal aluminium	100	7	300 to 600	700(1)	KTB0100YC307A	1.6
measure	copper	120	7	300 to 600	840(1)	KTB0120YC307A	1.9
	Bare copper	100	5	300 to 600	500 ⁽²⁾	KTB0100YC305B	2.7
		120	5	300 to 600	600(2)	KTB0120YC305B	3.2

- (1) Made of 5 sheets of 1.4 mm (16 % CU, 84 % AL). (2) Made of 5 sheets 1 mm (100 % CU).

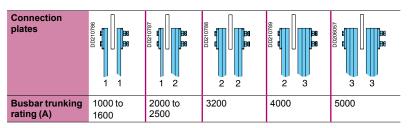
KTB01e0YC305B Bare copper




- E = number of vertical holes (bottom pattern)
- F = number of horizontal holes (bottom pattern)

YC5 - Connection insulated

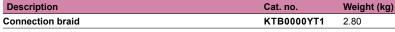
Туре	Surface treatment	"Width (mm) W"	"Depth (mm) T"	"Length (mm) L"	Cross-section (mm²)	Cat. no.	Weight (kg)
Fixed,	Bi-metal aluminium	100	7	1000	700(1)	KTB0100YC50710A	2.6
insulated	copper	100	7	600	700(1)	KTB0100YC50706A	1.6
	Bare copper	100	5	1000	500(2)	KTB0100YC50510B	4.5
		100	5	600	500 ⁽²⁾	KTB0100YC50506B	2.7

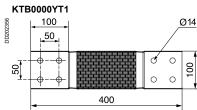

- (1) Made of 5 sheets of 1.4 mm (16 % CU, 84 % AL). (2) Made of 5 sheets 1 mm (100 % CU).

Determining the number of connection plates required

Busbar trunking rating (A)	Bare copper connection plates per phase			
	Number (2)	Section (mm²)		
1000	2 (100 x 5)	1000		
1250	2 (100 x 5)	1000		
1600	2 (100 x 5)	1000		
2000	3 (100 x 5)	1500		
2500	3 (100 x 5)	1500		
3200	4 (100 x 5)	2000		
4000	5 (100 x 5)	2500		
5000	6 (120 x 5)	3600		

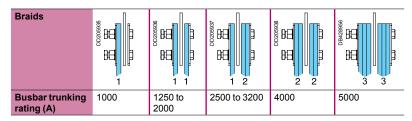
(2) The number of bi-metal alumunium copper connections per phase is the same as bare copper ones.

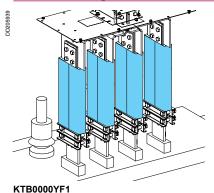

Note: 2 (100 x 5) bare copper can be replaced by 2 (100 x 7) bi-metal aluminium copper.


Connection accessories

Canalis KTA 800 to 5000

YT - Braids



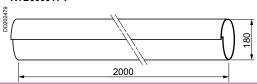

Determining the number of braids required

Busbar trunking rating (A)	Braids per phase	
	Number	Cross-section (mm²)
1000	1	600
1250	2	1200
1600	2	1200
2000	2	1200
2500	3	1800
3200	3	1800
4000	4	2400
5000	6	3600

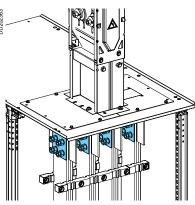
Canalis KTA 800 to 5000

YF - Insulating sheaths

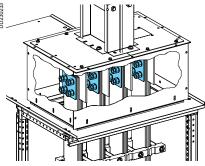
The YF conduit allows the various conductors of a connection performed with braids or with bare copper foils to be insulated.

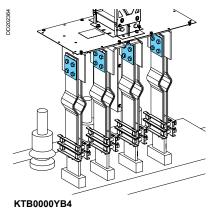

Installation is performed after complete assembly of the connection, with scratch

fastening for easier setup.

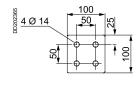

The insulating conduit is formed of a 2-metre plastic duct that can be cut to length as needed.

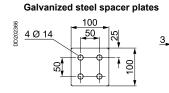
Désignation	Cat. no.	Weight (kg)
Insulating sheath	KTB0000YF1	1.00


KTB0000YF1


YB - Spacers and bolts

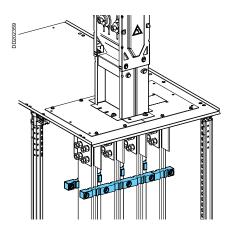
ΚT	BO	00	0	/B2	


KTB0000YB3


KTB0000YB5

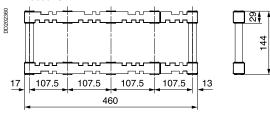
Description		Cat. no.	Weight (kg)
Connection torque nut kit	1 torque nut + 2 flat washers (Ø 60) + 1 elastic washer (Ø 55)	KTB0000YB1	-
Spacers for direct connection	8 x 3 mm galvanized steel spacers + 8 x 2 mm copper spacers + 16 x M12 x 60 bolts + washers and nuts	KTB0000YB2	5.50
Spacer plates for connector plate connections	8 x 3 mm galvanized steel plates + 16 x M12 x 60 bolts + washers and nuts	KTB0000YB3	4.00
	8 x 3 mm galvanized steel plates + 16 x M12 X 80 bolts + washers and nuts	KTB0000YB4	4.00
Set of bolts	16 x M10 x 60 bolts + washers and nuts	KTB0000YB5	2.00

Copper spacer

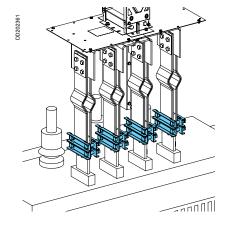


Catalogue numbers and dimensions

Connection accessories

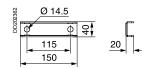

Canalis KTA 800 to 5000

YS - Bar supports


Description	Cat. no.	Weight (kg)
Bar support, 115 mm between centres	KTB0000YS1	2.40
for bar of 5 or 10 mm		

KTB0000YS1

KTB0000YS1


YS - Bar clamps

Description	Dimensions of connection terr	transformer Cat. no. ninals (mm)	Weight (kg)
8 bar clamps	100	KTB0000YS2	6.40
	120	KTB0000YS3	6.40

Each bar clamp includes 2 cross members and associated fixings.

KTB0000YS2

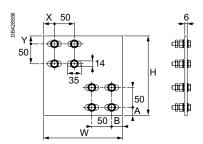
KTB0000YS3

KTB0000YS●

YP1 - Connection plate for oil immersed Minera transformer

KTB0000YP1●

Type YP1

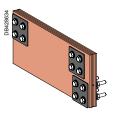

Plates for Minera oil transformer, connection from the top.

The product reference is for one phase and includes screws, nuts and washers at the busbar

Bolts at the equipments level are not included in the reference.

See selection table page 251.

A (mm)	B (mm)	H (mm)	W (mm)	X (mm)	Y (mm)	Cat. no.	Weight (kg)
20	28	200	200	28	20	KTB0000YP11	2.1
20	38	200	200	38	20	KTB0000YP12	2.1
20	28	200	260	28	20	KTB0000YP13	2.8
25	25	200	200	25	21	KTB0000YP14	2.1


Connection selection guide, see page 248 and page 250

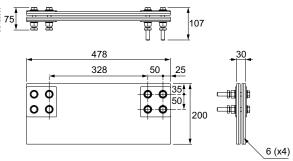
106

YP2 - Connection plates for KTA5000 end feed units

KTB0000YP21

KTB0000YP22

Type YP21 for ER1 to ER6 horizontal incomer

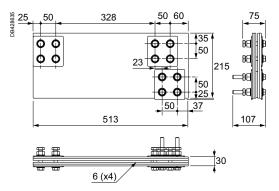

Plates to link connection pads of 2 end feed units KTA2500 (ER1 to ER6) in order to create a

Link to transformer or switchboard has to be connected at the lowest 4 bolts system.

The product reference is for one phase and includes screws, nuts and washers at the busbar trunking side.

Bolts at the transformer or switchboard level are not included in the reference.

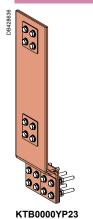
	Cat. no.	Weight (kg)
1 set of plates and bolts for 1 phase	KTB0000YP21	21


Type YP22 for ER1 to ER6 vertical incomer

Plates to link connection pads of 2 end feed units KTA2500 (ER1 to ER6) in order to create a KTA5000.
The product reference is for one phase and includes screws, nuts and washers at the busbar

trunking side.

Bolts at the transformer or switchboard level are not included in the reference.


	Cat. no.	Weight (kg)
1 set of plates and bolts for 1 phase	KTB0000YP22	24.5

Connection accessories

Canalis KTA 5000

YP2 - Plates for KTA5000 end feed units

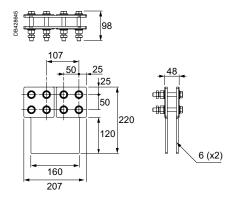
Type YP23 for EL5 horizontal incomer

Plates to link connection pads of 2 end feed units KTA2500 EL5 in order to create a KTA5000. The product reference is for one phase and includes screws, nuts and washers at the busbar trunking side.

Bolts at the transformer or switchboard level are not included in the reference.

				Cat. no.		Weight (kg)
1 set of pla	tes and bolts	for 1 phase		KTB000	0YP23	35
68 48 88 88 88 88 88 88 88 88 88 88 88 88		(x4)	***	50		
-		615		115	65	;
50.5	50 3	28	50 113	50 25		
0	Φ		0 0 0	0 0 75 0 0 50		

KTB0000YP24

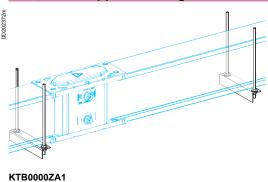

Type YP24 for EL1 and EL2 dry transformer flexible links

Plates to link bottom sides of 2 sets of flexibles in order to a create a single plate at transformer

The product reference is for one phase and includes screws, nuts and washers at the busbar trunking side.

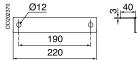
Drillings and bolts at the dry transformer level are not included in the reference.

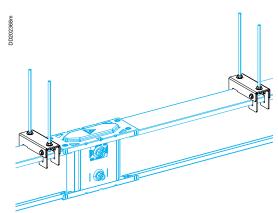
	Cat. no.	Weight (kg)
1 set of plates and bolts for 1 phase	KTB0000YP24	5

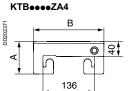


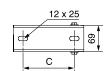
Connection selection guide, see page 238.

Supports and fixings


Canalis KTA


ZA1, ZA4 - Supports for edge wise horizontal installation




Description	Rating (A)	Busbar trunking height (mm)	Cat. no.	Weight (kg)
1 support from the bottom (threaded rods supplied) ⁽¹⁾	-	-	KTB0000ZA1	2.80
Set of 2 supports from	800	74	KTB0074ZA4	3.20
the top (threaded rods not supplied)	1000 to 4000	104 to 404	KTB0404ZA4	3.80

KTB0000ZA1

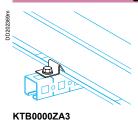
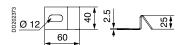


Table of dimensions

Height "H"	Dimen	Dimensions (mm)				
(mm)	Α	В	С			
74	74	160	110			
104 to 404	86	186	136			

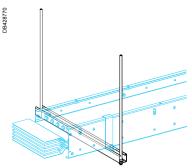
(1) Threaded rods, length = 2 metres, are supplied with the support.

ZA3 - Hooks for edge wise horizontal installation

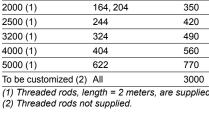


KTB••••ZA4

2 fixing grips are needed for each fixing point.

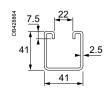

Description	Cat. no.	Weight (kg)
1 set of 8 hooks	KTB0000ZA3	0.60

KTB000ZA3

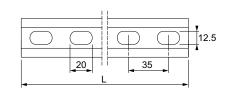


110

ZA7 - Supports for flat wise horizontal installation (41 x 41)



(1) Threaded rods, length = 2 meters, are supplied with the support.
(2) Threaded rods not supplied.


Busbar trunking height "H" (mm)

74, 104, 124

Busbar trunking rating (A)

800 to 1600 (1)

Length L (mm)

280

Cat. no.

KTB0124ZA7

KTB0204ZA7

KTB0244ZA7

KTB0324ZA7

KTB0404ZA7

KTB0622ZA7

KTB0000ZA7

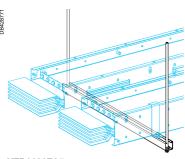
Weight

(kg)

0.6

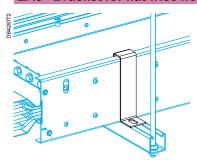
0.7

0.9


1.2

1.6

6.5

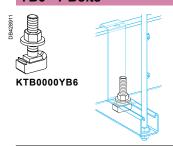

1

KTB•••ZA7

KTB0622ZA7

ZA8 - Bracket for flat wise horizontal installation

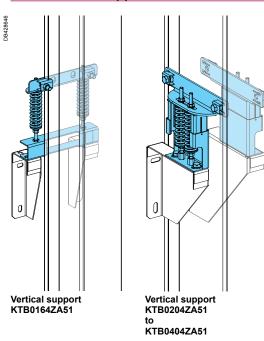
KTB0000ZA8


2 brackets are needed for each fixing point.

Description	Cat. no.	Weight (kg)
1 set of 8 brackets	KTB0000ZA8	0.14

Supplied with a spacer for fixation of KT••••ED••••.
T-bolts are not supplied with this reference.

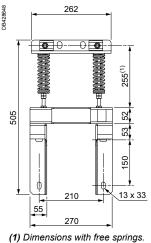
YB6 - T-Bolts

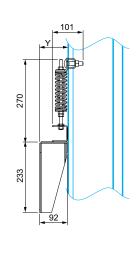

Description	Cat. no.	Weight (kg)
1 box of 50 bolts M10 x 35 for rails 41 x 41	KTB0000YB6	6.0

Includes T-screws, nuts and washers.

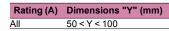
Supports and fixings

Canalis KTA

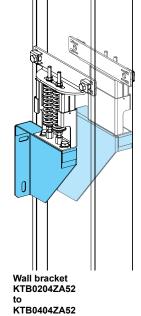

ZA5 - Vertical supports

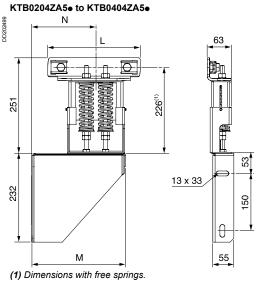


Description	Rating	Busbar	Vertical suppo	rt	Wall bracket		
	(A)	trunking height (mm)	Cat. no.	Weight (kg)	Cat. no.	Weight (kg)	
Fixings	800 to 1600	74 to 164	KTB0164ZA51	2.1	KTB0164ZA52	2	
_	2000	204	KTB0204ZA51	6.9	KTB0204ZA52	3.2	
	2500	244	KTB0244ZA51	7.1	KTB0244ZA52	3.5	
	3200	324	KTB0324ZA51	7.6	KTB0324ZA52	4.2	
	4000	404	KTB0404ZA51	8.4	KTB0404ZA52	4.2	


For further details, see page 212.

KTB0164ZA5●




Table of dimensions

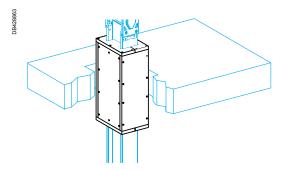
Wall bracket

KTB0164ZA52

Rating Dimensions (mm) (A) М 2000 202 205 152 to 202 2500 3000 240 245 172 to 222 322 325 212 to 262 402 325 252 to 302 4000

Table of dimensions

T	یم مدادا			4:
ırıın	ıkına	cross	-sec	ioit:

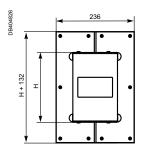

	Truthking Cross-Section									
	Rating (A)	800(1)	1000	1250	1600	2000	2500	3200	4000	5000
	Height H (mm) Width W (mm)									244
DD210867	<u></u> =						└───		404	130 57
	 	140 140	140	140	140	140	140	140	140	140 140

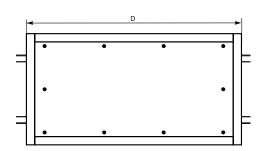
Accessories

Fire-barrier kit

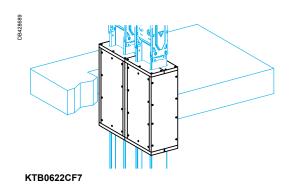
Canalis KTA 800 to 5000

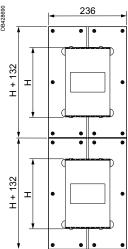
CF - Fire-barrier

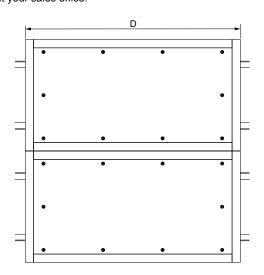



Туре	Busbar trunking rating (A)	Busbar trunking height "H" (mm)		Cat. no.
Fire-barrier kit	800	74	650	KTB0074CF6
	1000	104	650	KTB0104CF6
	1250	124	650	KTB0124CF6
	1600	164	650	KTB0164CF6
	2000	204	650	KTB0204CF6
	2500	244	650	KTB0244CF6
	3200	324	650	KTB0324CF6
	4000	404	650	KTB0404CF6
	5000	622	750	KTB0622CF7(1)

The filler material around the busbar trunking must meet the requirements currently in force to guarantee that the wall and ceiling fire-resistance class (for example DIN 1045 and DIN 1053-1) is maintained.


Filler material not supplied.


(1) This reference includes a sealant cartridge KTB0000SC1.



The fire barrier kit can also be made up on site by the installer according to Schneider Electric's drawings and specifications. For further information, consult your sales office.

SC - Fire-barrier sealant cartridge

Туре	Cat. no.
Fire-barrier sealant cartridge	KTB0000SC1

Canalis KTA

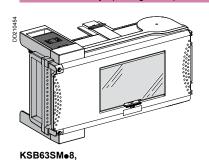
KSB100SMe12

63 to 100 A tap-off units from Canalis KS range for modular devices

IP55

Tap-off units with isolator, not equipped Disconnection by opening the tap-off unit cover

Rating

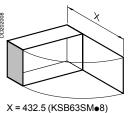

(A) 63

100

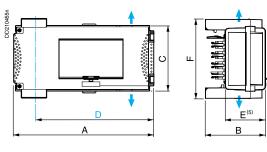
Number of 18 mm modules(3)

8

12



Tap-off unit disconnection by opening or closing the cover should be carried out only if the downstreamload is de-energised.


System earthing		Busba	ar trunking	TT-TNS-TNC-IT(1)	TNC	
arrangement		Tap-o	ff unit	TT-TNS-TNS-IT(1)	TNC	
Tap-off polarity				3L + N + PE ⁽²⁾	3L + PEN	
Tap-off diagram (e.g. circuit breake protection)	er			E L1 L2 L3 N PE	L1 L2 L3 N PE	
Connection	Max. size Flexible		Cable gland (not supplied)	Cat. no.	Cat. no.	Weight (kg)
On devices	16	16	ISO 50 max.	KSB63SM48	KSB63SM58	2.40
On devices	35	35	ISO 63 max.	KSB100SM412	KSB100SM512	5.00

- (1) The neutral must be protected or not distributed (3L+PE) for the IT system.
- (2) Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible).
 (3) Supplied with blanking plates:1x5 divisible (8 modules) or 2x5 divisible (12 modules).
- (4) Maximum diameter for a multipolar cable.

KSB63SMe8, KSB100SMe12

 $X = 545.5 (KSB100SM \bullet 12)$

Cable exit Centre line of tap-off outlets (5) Protruding

Dimensions	Ratir	ıg (A)
	63	100
A	357	444
В	158	183
С	167	202
D	309	397
A B C D E	108	133
F	202	220

125 to 160 A tap-off units from Canalis KS range for modular devices

IP55

Tap-off units for NG modular devices, not equipped

Rating

The cover of the tap-off unit may be opened or closed only when the circuit breaker is in the Off position.

System earthing	Busba	ar trunking	TT-TNS-TNC-IT(1)	TNC	
arrangement	Tap-o	ff unit	TT-TNS-TNS-IT(1)	TNC	
Tap-off polarity			3L + N + PE ⁽²⁾	3L + PEN	
Tap-off diagram (e.g. circuit breaker protection)		SACHCATA	1 L2 L3 N PE 25 9 1 2 Q	L1 L2 L3 N PE	
<u>(</u>	Max. size mm²) Flexible Rigid	Cable gland ⁽³⁾ (not supplied)	Cat. no.	Cat. no.	Weight (kg)

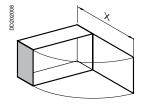
KSB160SM413 KSB160SM513 8.50

circuit-breaker (A) 160 NG125 Rotary handle 19088 (4) NG160 Rotary handle 28060 (4)

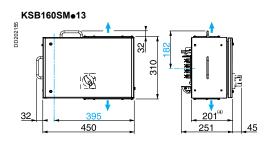
Type of

(1) The neutral must be protected or not distributed (3L+PE) for the IT system.

(2) Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible).


ISO 25 max.

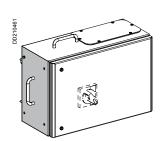
(3) Maximum diameter by unipolar cable.


50

(4) Not supplied.

Terminals

X = 625.5


Cable exit Centre line of tap-off outlets (4) Protruding

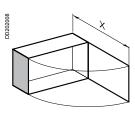
Canalis KTA

KSB•••DC•

100 to 400 A tap-off units from Canalis KS range for Compact NSX circuit breakers IP55

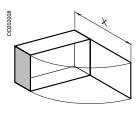
Tap-off units for Compact NSX, fixed, front-connected circuit breakers, not equipped

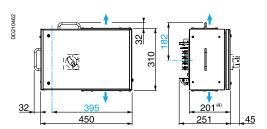
The cover of the tap-off unit may be opened or closed only when the circuit breaker is in the Off position.


System earthing	Busbar trunking	TT-TNS-TNC-IT(1) TNC
arrangement	Tap-off unit	TT-TNS-TNS-IT(1) TNC
Tap-off polarity		3L + N + PE ⁽²⁾ 3L + PEN
Tap-off diagram (e.g. circuit breaker protection)		11 L2 L3 N PE

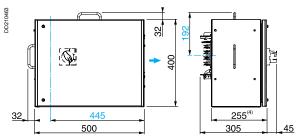
						0 0 0 0	0 0 0 0 0	
Rating (A)	Type of circuit breaker	Connection	Max. size	e (mm²) Rigid	Cable gland ⁽³⁾ (not supplied)	Cat. no.	Cat. no.	Weight (kg)
160	NSX100 or NSX160 Curve N, H or L Rotary handle 29338	Terminals	50	70	ISO 25 max.	KSB160DC4	KSB160DC5	9.00
250	NSX250 Curve N, H or L Rotary handle 29338	Terminals	70	150	ISO 32 max.	KSB250DC4	KSB250DC5	12.50
400	NSX400 Curve N, H or L Rotary handle 32598	Terminals	150	240	ISO 40 max.	KSB400DC4	KSB400DC5	18.00

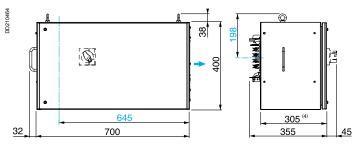
- (1) The neutral must be protected or not distributed (3L+PE) for the IT system.
- (2) Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible).
- (3) Maximum diameter by unipolar cable.


KSB160DC●



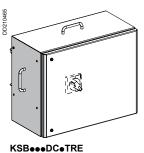
X = 726.5


X = 625.5


X = 976.5

KSB250DC●

KSB400DC●

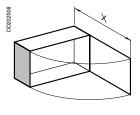


Cable exit
Centre line of tap-off outlets
(4) Protruding

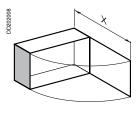
250 to 400 A tap-off units from Canalis KS range for **Compact NSX circuit breakers**

IP55

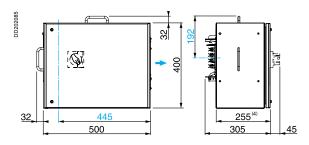
Tap-off units for measurements and metering, not eqquiped

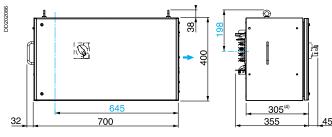

The cover of the tap-off unit may be opened or closed only when the circuit breaker
is in the Off position.

	Max. size Flexible	(mm²) Cable gland ⁽³⁾ Rigid (not supplied)	Cat. no.	Cat. no.	Weight (kg)
Tap-off diagrar (e.g. circuit bre protection)			L1 L2 L3 N PE	L1 L2 L3 N PE	
Tap-off outlets			3L + N + PE(2)	3L + PEN	
arrangement		Tap-off unit	TT-TNS-TNS-IT(1) TNC	
System earthin	ıg	Busbar trunking	TT-TNS-TNC-IT(1	1) TNC	


						0 0 0 0 0	0 0 0 0 0	
Rating (A)	Type of circuit breaker	Connection	Max. size		Cable gland(3) (not supplied)	Cat. no.	Cat. no.	Weight (kg)
250	NSX250 Curve N, H or L Rotary handle 29338	Terminals	70	150	ISO 32 max.	KSB250DC4TRE	KSB250DC5TRE	13.50
400	NSX400 Curve N, H or L Rotary handle 32598	Terminals	150	240	ISO 40 max.	KSB400DC4TRE	KSB400DC5TRE	19.50

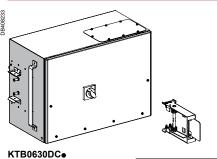
- (1) The neutral must be protected or not distributed (3L+PE) for the IT system.
- (2) Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible).
 (3) Maximum diameter by unipolar cable.


KSB250DC⊕TRE


X = 726.5

X = 976.5

KSB400DC⊕TRE



Cable exit Centre line of tap-off outlets (4) Protruding

Canalis KTA

630 A tap-off units from Canalis KS range for **Compact NSX circuit breakers** IP55

DC - Tap-off units for Compact NSX, fixed, front-connected circuit breakers, not equipped

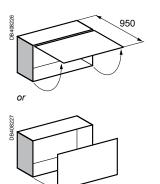
Rating

630(4)(6)

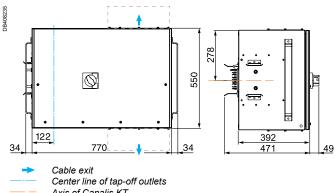
(A)

Type of

NSX630 Curve N, H or L

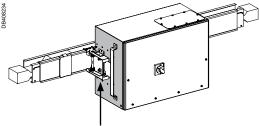

circuit breaker

The cover of the tap-off unit may be opened or closed only when the circuit breaker is in the Off position.


System earthi	ng	Busbar trunki	ng	TT-TNS-TNC-IT(1)	TNC	
arrangement		Tap-off unit		TT-TNS-TNS-IT(1)	TNC	
Tap-off polarity	y			3L + N + PE ⁽²⁾	3L + PEN	
Tap-off diagrai (e.g. circuit bre protection)			DD210451	L1 L2 L3 N PE	L1 L2 L3 N PE	
	Max. size L or N / PE	` /	ole gland ⁽³⁾ t supplied)	Cat. no.	Cat. no.	Weight (kg)
Terminals	2 x 300 / 1	x 150 ISO	70 max	KTB0630DC4		45

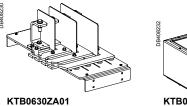
- 2 x 300 / 1 x 150 ISO 70 max. KTB0630DC5 46 Rotary handle 32598 (1) The neutral must be protected or not distributed (3L+PE) for the IT system.
 - (2) Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible).
 - (3) Maximum diameter by unipolar cable.
 - (4) De-rating coefficient to apply: 0.9.
 - (5) The auto clamping system is included in the reference and delivered in the box.
 - (6) To be installed on KT ED type distribution length only.

For an installation on Canalis KT delivered before 2016 contact our help desk.



KTB0630DC

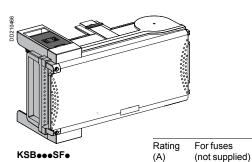
Axis of Canalis KT


Connection box to be fitted above or below

The auto clamping system has to be installed on the KT ED distribution units (5)

Schneider Electric

Option accessories	Cat. no.
Kit of connection bars	KTB0630ZA01
Connecting box	KTB0630ZA04

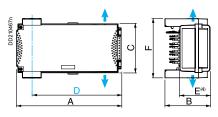


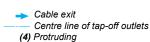
KTB0630ZA04

50 to 100 A tap-off units from **Canalis KS range for NF fuses** IP55

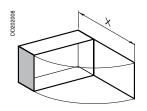
Tap-off units with isolator for cylindrical fuses Disconnection by opening the tap-off unit cover

100




Tap-off unit disconnection by opening or closing the cover should be carried out only if the
downstreamload is de-energised.

	System earthing		Busba	ar trunking	TT-TNS-TNC-IT(1)	TNC	
	arrangement	Тар-о	ff unit	TNC			
	Tap-off polarity				3L + N + PE ⁽²⁾	3L + PEN	
	Tap-off diagram (e.g. fuse protecti	ion)		DD210470	L1 L2 L3 N PE \$ 58 88	L1 L2 L3 N PE	
For fuses	Connection	Max. size	e (mm²)	Cable gland ⁽³⁾	Cat. no.	Cat. no.	Weight
(not supplied)		Flexible	Rigid	(not supplied)			(kg)
NF 14 x 51 Type gG : 50 A max. Type aM : 50 A max.	Terminals	25	25	ISO 50 max.	KSB50SF4	KSB50SF5	2.40
NF 22 x 58 Type gG : 100 A max. Type aM : 100 A max.	Terminals	50	50	ISO 63 max.	KSB100SF4	KSB100SF5	5.00


- (1) The neutral must be not distributed (3L+PE) for the IT system.
- (2) Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible only if N not distributed).
- (3) Maximum diameter for a multipolar cable.

KSB50SF●, KSB100SF●

Dimensions	Ratin	g (A)
	50	100
A	356	444
В	153	178
С	167	202
D	309	397
E	103	128
F	202	220

 $X = 432.5 (KSB50SF \bullet)$ $X = 545.5 (KSB100SF \bullet)$

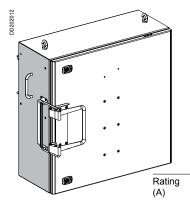
100 to 400 A tap-off units from **Canalis KS range for NF fuses** IP55

Canalis KTA

Tap-off units with isolator for blade-type fuses

100

160


250

400

Size 2

Type gG: 400 A max. Type aM: 400 A max

Disconnection by opening the tap-off unit cover

Tap-off unit disconnection by opening or closing the cover should be carried out only if the downstreamload is de-energised. It is possible to install an OF contact triggered by cover opening (see the "Accessories" section, page 126).

Busbar trunking

Tap-off unit

TT-TNS-TNC-IT(1) TNC

TT-TNS-TNS-IT(1) TNC

	lap-off polarity				3L + N + PE ⁽²⁾	3L + PEN	
	Tap-off diagram (e.g. fuse protect			מיצאוויכיות	L1 L2 L3 N PE	L1 L2 L3 N PE	
For blade-type fuses (not supplied)	Connection	Max. size	(mm²) Rigid	Cable gland (not supplied)	Cat. no.	Cat. no.	Weight (kg)
Size 00 Type gG : 100 A max. Type aM : 100 A max.	Terminals	50	50	ISO 63 ⁽³⁾ max.	KSB100SE4 ⁽⁵⁾	KSB100SE5(5)	5.00
Size 00 Type gG : 160 A max. Type aM : 160 A max.	Terminals	35	50	ISO 20 ⁽⁴⁾ max.	KSB160SE4	KSB160SE5	11.00
Size 0 Type gG : 160 A max. Type aM : 160 A max.	Terminals	35	50	ISO 20 ⁽⁴⁾ max.	KSB160SF4	KSB160SF5	11.00
Size 1 Type gG : 250 A max. Type aM : 250 A max.	Terminals	150	150	ISO 32 ⁽⁴⁾ max.	KSB250SE4	KSB250SE5	20.00

KSB160SE● KSB250SE●

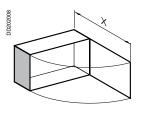
- (1) The neutral must be not distributed (3L+PE) for the IT system.
- (2) Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible only if N not distributed).

KSB400SE4

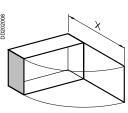
ISO 40(4) max.

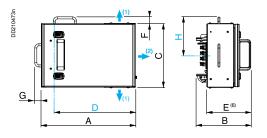
- (3) Maximum diameter for a unipolar cable.
- (4) Cable gland for multipolar cable only.

240


Terminals

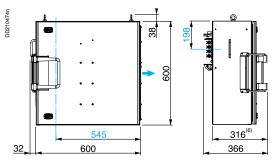
(5) For 100A dimensions, see "Tap-off units with insulators for cylindrical fuses", page 119 cat. no. KSB100SF.


KSB160SE●, KSB250SE●


System earthing

arrangement

X = 577.5 (KSB160SE•) X = 777 (KSB250SE●)



Dimensions	Ratir	ıg (A)
	160	250
A	450	600
В	257	308
B C D E	300	400
D	395	548
E	207	258
F	32	32
G	32	32
Н	182	192

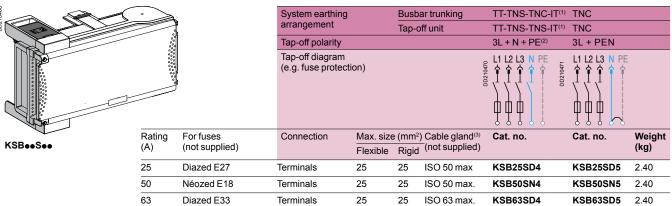
KSB400SE5

29.20

KSB400SE●

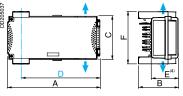
Cable exit: (1) exit of KSB160S●●, (2) exit of KSB250SE● Centre line of tap-off outlets

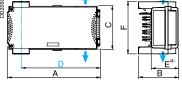
(6) Protruding


X = 855

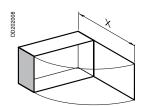
25 to 63 A tap-off units from **Canalis KS range for DIN fuses** IP55

Tap-off units with isolator for screw-type fuses


Disconnection by opening the tap-off unit covert


Tap-off unit disconnection by opening or closing the cover should be carried out only if the downstreamload is de-energised.

- (1) The neutral must be not distributed (3L+PE) for the IT system.
- (2) Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible only if N not
- (3) Maximum diameter for a multipolar cable.


KSB••S••

Cable exit Centre line of tap-off outlets (4) Protruding

Dimensions	Rating (A)		
	25 and 50	63	
A	356	444	
В	153	178	
С	167	202	
D	309	397	
E	103	198	
F	202	220	

X = 432.5 (KSB25SD \bullet , KSB50SN \bullet) X = 545.5 (KSB63SD \bullet)

100 to 400 A tap-off units from **Canalis KS range for DIN fuses** IP55

Canalis KTA

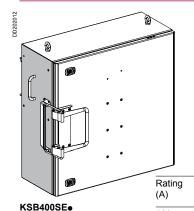
Tap-off units with isolator for blade-type fuses

100

160

250

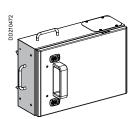
400

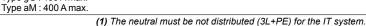

Size 1

Size 2

Type gG: 250 A max. Type aM: 250 A max.

Type gG: 400 A max.


Disconnection by opening the tap-off unit cover


Tap-off unit disconnection by opening or closing the cover should be carried out only if the downstreamload is de-energised. It is possible to install an OF contact triggered by cover opening (see the "Accessories" section, page 126).

TT-TNS-TNC-IT(1) TNC

	- 3	9					
	arrangement		Tap-o	off unit	T(1) TNC		
	Tap-off polarity				3L + N + PE ⁽²⁾	3L + PEN	
	Tap-off diagram (e.g. fuse protect				LI LZ L3 N PE	L1 L2 L3 N PE	
For blade-type fuses	Connection	Max. size	e (mm²) Cable gland	Cat. no.	Cat. no.	Weight
(not supplied)		Flexible	Rigid	(not supplied)			(kg)
Size 00 Type gG: 100 A max. Type aM: 100 A max.	Terminals	50	50	ISO 63 ⁽³⁾ max.	KSB100SE4(5)	KSB100SE5(5)	5.00
Size 00 Type gG : 160 A max. Type aM : 160 A max.	Terminals	35	50	ISO 20 ⁽⁴⁾ max.	KSB160SE4	KSB160SE5	11.00

KSB160SE KSB250SE●

150

240

KSB250SE4

KSB400SE4

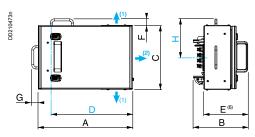
316⁽⁶⁾

366

- (3) Maximum diameter for a unipolar cable.
- (4) Cable gland for multipolar cable only.

150

240

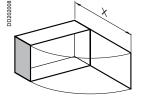

Terminals

Terminals

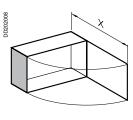
ISO 32(4) max.

ISO 40(4) max.

KSB160SE●, KSB250SE●


Dimensions	Ratin	ıg (A)
	160	250
A	450	600
В	257	308
С	300	400
D	395	548
E F	207	258
F	32	32
G	32	32
Н	182	192

KSB250SE5


KSB400SE5

20.00

29.20

X = 577.5 (KSB160SE•) X = 777 (KSB250SE●)

X = 855

Cable exit : (1) exit of KSB160S●●, (2) exit of KSB250SE● Centre line of tap-off outlets

(6) Protruding

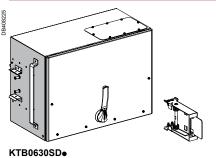
600

KSB400SE●

⁽²⁾ Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible only if N not distributed).

⁽⁵⁾ For 100 A dimensions, see "Tap-off units with insulators for cylindrical fuses", page 119 cat. no. KSB100SFe

630 A tap-off units from Canalis KS range with switchdisconnector for DIN fuses


IP55

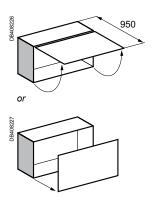
SD - Tap-off units with switch-disconnector

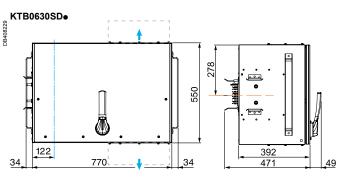
Rating

(A) 630(4)(6) Type of fuses

DIN size 3

The cover of the tap-off unit may be opened or closed only when the switchdisconnector is in the Off position.

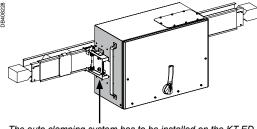

System earthir arrangement			TT-TNS-TNC-IT		
arrangement	Tap-off u	unit	TT-TNS-TNS-IT	⁽¹⁾ TNC	
Tap-off polarity	<u>'</u>		3L + N + PE ⁽²⁾	3L + PEN	
Tap-off diagrar (e.g. fuse prote		AFANYOUR	11 12 L3 N PE	L1 L2 L3 N PE	
	Max. size (mm²) L or N / PE	Cable gland ⁽³⁾ (not supplied)	Cat. no.	Cat. no.	Weight (kg)
Terminals :	2 x 300 / 1 x 150	ISO 70 max.	KTB0630SD4		64


- ISO 70 max. (1) The neutral must be protected or not distributed (3L+PE) for the IT system.
- (2) Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible).

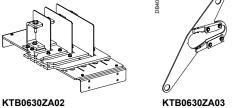
 (3) Maximum diameter by unipolar cable.

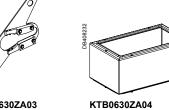
2 x 300 / 1 x 150

- (4) De-rating coefficient to apply: 0.87.
- (5) The auto clamping system is included in the reference and delivered in the box.
 (6) To be installed on KT ED type distribution length only.
 For an installation on Canalis KT delivered before 2016 contact our help desk.



Cable exit Center line of tap-off outlets

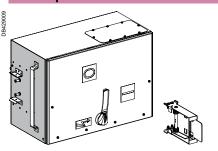

Axis of Canalis KT


Connection box to be fitted above or below

The auto clamping system has to be installed on the KT ED distribution units (5)

Option accessories	Cat. no.
Kit of connection bars	KTB0630ZA02
Extension rotary handle	KTB0630ZA03
Connecting box	KTB0630ZA04

KTB0630SD5 68


Canalis KTA

KTB0630SE●

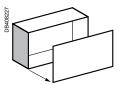
630 A tap-off units from Canalis KS range with switch-disconnector for DIN fuses

IP55

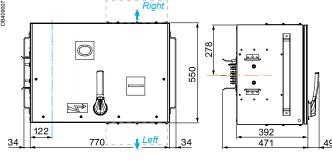
SE - Tap-off units with switch-disconnector internal arc tested IEC 61-641

The cover of the tap-off unit may be opened or closed only when the switch-disconnector is in the Off position.

To be installed on KT ED type distribution length only.


System earthing	Busbar	trunking		TT-TNS-TNC-IT(1)	TNC	
arrangement	Tap-off	unit		TT-TNS-TNS-IT(1)	TNC	
Tap-off polarity				3L + N + PE(2)	3L + PEN	
Tap-off diagram (e.g. fuse protection)		H TO SALVA		L1 L2 L3 N PE 88 88 82 82 82 82 82 82 82 82 82 82 82	L1 L2 L3 N PE	
Connection Max. siz	ze (mm²)	Cable gland(3)	Cable	Cat. no.	Cat. no.	Weight

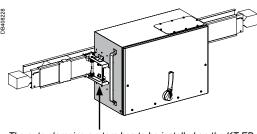
						0000	00000	
Rating (A)	Type of fuses	Connection	Max. size (mm²) L or N / PE (kg)	Cable gland ⁽³⁾ (not supplied)		Cat. no.	Cat. no.	Weight (kg)
630(4)	DIN size 3	Terminals	2 x 300 /	_	Right	KTB0630SE4R		72
			1 x 150		Left	KTB0630SE4L		72
				Right		KTB0630SE5R	78	
					Left		KTB0630SE5L	78


- (1) The neutral must be protected or not distributed (3L+PE) for the IT system.
- (2) Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible).
- (3) Maximum diameter by unipolar cable.
- (4) De-rating coefficient to apply: 0.87.
- (5) The auto clamping system and the kit of connection bars are included in the reference and delivered in the box.

For an installation on Canalis KT delivered before 2016 contact our help desk.

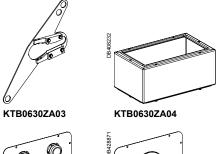
95000000

KTB0630SE●


-

Cable exit

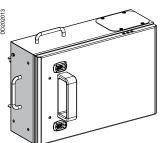
Center line of tap-off outlets


Axis of Canalis KT

Connection box to be fitted above or below

The auto clamping system has to be installed on the KT ED distribution units (5)

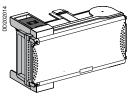
Option accessories	Cat. no.
Extension rotary handle	KTB0630ZA03
Connecting box	KTB0630ZA04
Plate with 5 cable glands 24 to 40 mm	KTB0000GP01
Plate with 1 cable clamp 30 to 70 mm	KTB0000GP02
Plate with 2 cable clamps 30 to 70 mm	KTB0000GP03


KTB0000GP02

KTB0000GP03

32 to 160 A tap-off units from **Canalis KS range for BS fuses** IP55

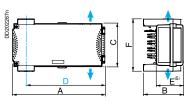
Tap-off units for screw-mounted fuses


Disconnection by unplugging the tap-off unit

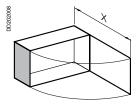
Tap-off unit disc	onnection by opening or	closing the cover	should be carrie	d out only if the
downstreamload	d is de-energised.			

System earthing	Busbar trunking	TT-TNS-TNC-IT(1)
arrangement	Tap-off unit	TT-TNS-TNS-IT(1)
Tap-off polarity		3L + N + PE ⁽²⁾
Tap-off diagram (e.g. fuse protection)		L1 L2 L3 N PE

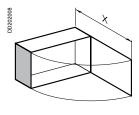
KSB160SG4

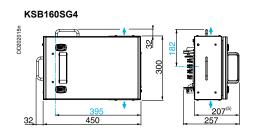


KSBeeSG4


						0 0 0 0	
Rating (A)	For fuses (not supplied)	Connection	Max. size	e (mm²) Rigid	Cable gland (not supplied)	Cat. no.	Weight (kg)
32	BS88 A1	Terminals	25	25	ISO 50 ⁽³⁾ max	KSB32SG4	2.40
80	BS88 A1 or A3	Terminals	35	50	ISO 63 ⁽³⁾ max or ISO 20 ⁽⁴⁾ max	KSB80SG4	5.00
160	BS88 B1 or B2	Terminals	35	50	ISO 20(4) max	KSB160SG4	11.00

- (1) The neutral must be not distributed (3L+PE) for the IT system.
- (2) Also suitable for tap-off unit 3L + PE (N not distributed).
- (3) Maximum diameter for a multipolar cable.
- (4) Maximum diameter for a unipolar cable.


KSB32SG4, KSB80SG4


Dimensions	Rating (A)		
	32	80	
A	356	444	
В	153	178	
С	167	202	
D	309	397	
A B C D E	103	128	
F	202	220	

X = 432.5 (KSB32SG4) X = 545.5 (KSB80SG4)

X = 577.5

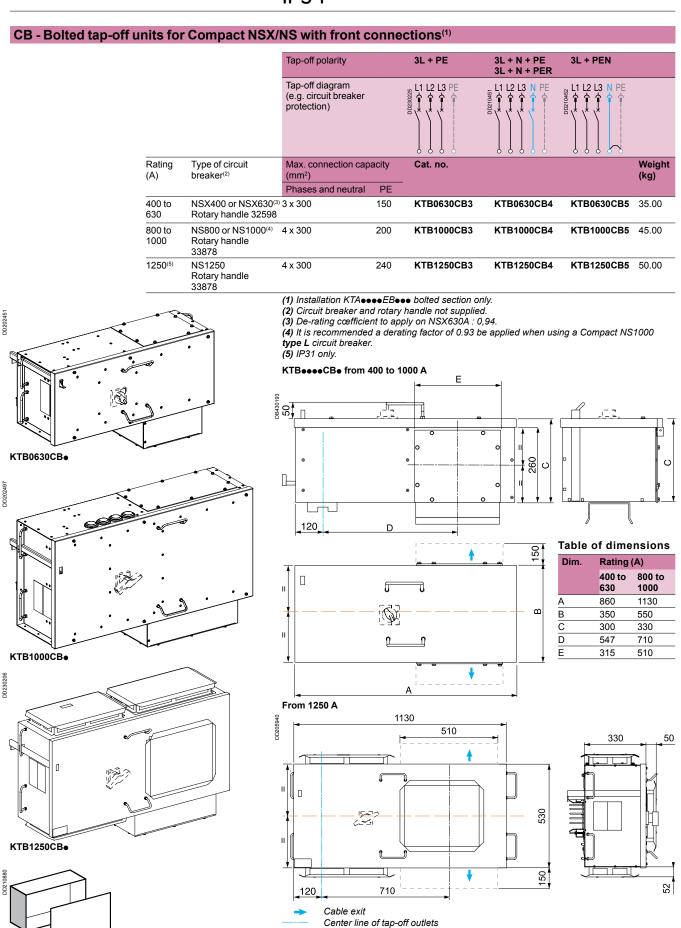
Cable exit Centre line of tap-off outlets (5) Protruding

Accessories for tap-off units from Canalis KS range IP55

Canalis KTA

Accessories for all tap-off units for modular devices

Designation	Description	Cat. no.	Weight (kg)
Modular blanking plate	Divisible set of 10 x 5	13940	0.08
Adhesive label ⁽¹⁾	Set of 12 label-holders (H = 24 mm, W = 180 mm)	08905	-
	Set of 12 labels (H = 24 mm, W = 432 mm)	08903	-
	Set of 12 divisible labels (H = 24 mm, W = 650 mm)	08907	-


⁽¹⁾ Self-adhesive support complete with transparent cover and paper label.

Accessories for all sheet-metal tap-off units

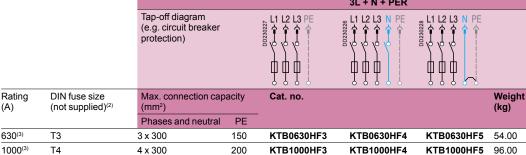
Designation	For tap-off unit	Order in multiples of	Cat. no.	Weight (kg)
Cover contact (break before opening)	KSB100S● to KSB400S●	1	KSB400ZC1	0.03

Bolted tap-off units from Canalis KT for Compact NSX/NS 400 to 1250 A circuit breakers

IP54

Axis of Canalis KT

Connection box to be fitted above or below

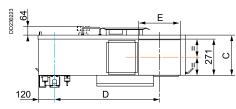

630 and 1000 A bolted tap-off units with switch-disconnectors for DIN fuses

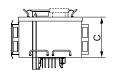
Canalis KTA

IP31

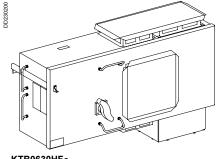
Tap-off polarity

HF - Bolted tap-off units with switch-disconnectors(1)

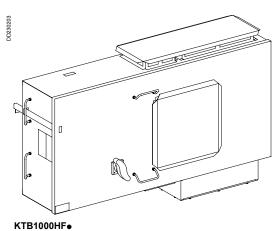

3L + PE



1000(3)


- (1) Installation KTA ••• EB•• bolted section only.
- (2) Switch-disconnectors and rotary handle supplied.
- (3) Derating coefficient to apply:0.8.

KTB••••HF•



3L + PEN

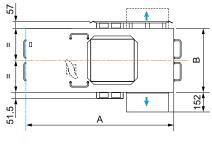
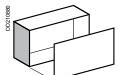
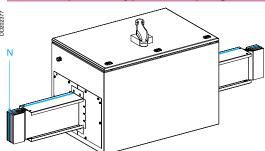



Table of dimensions

Dim.	Rating (A	7)	
	630	1000	
A	1108	1438	
В	480	690	
С	300	330	
D	786.5	1010	
E	315	510	

Cable exit

Center line of tap-off outlets

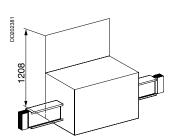

Axis of Canalis KT

Connection box to be fitted above or below

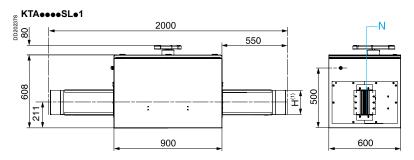
Coupling isolators from 1000 to 2500 A

IP55

SL - Compact NS type NA coupling isolators

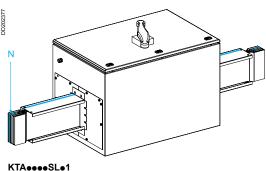


Fits equally on ducting in a flat position, on the edge (door accessible from above or below) or


Tap-off unit door locking is achieved using a door key lock.

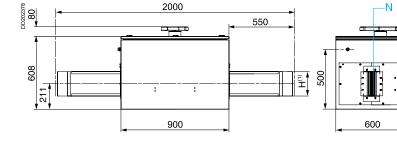
Rating	Type of	Cat. no.	Cat. no.		Weight
(A)	isolator (supplied)	3L + PE	3L + N + PE	3L + N + PER ⁽¹⁾	(kg)
1000	NS1000 NA	KTA1000SL31	KTA1000SL41	KTA1000SL51	135.00
1250	NS1250 NA	KTA1250SL31	KTA1250SL41	KTA1250SL51	140.00
1600	NS1600 NA	KTA1600SL31	KTA1600SL41	KTA1600SL51	150.00

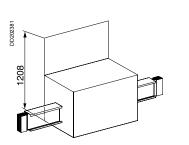
(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••SL51 by

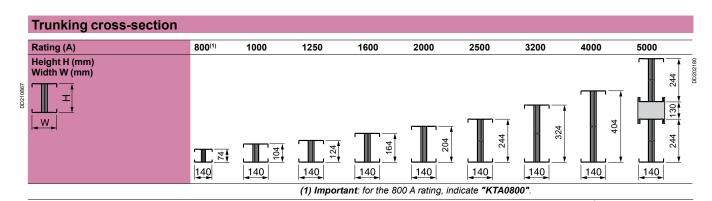


KTA • • • • SL • 1

(1) See the "Trunking cross-section" table below.

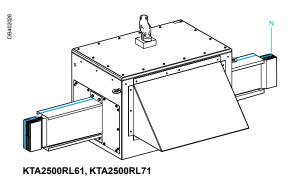

SL - Interpact INV coupling isolators


Fits equally on ducting in a flat position, on the edge or vertically. Tap-off unit door locking is achieved using a door key lock.


Rating	Type of	Cat. no.			Weight
(A)	isolator (supplied)	3L + PE	3L + N + PE	3L + N + PER	(kg)
2000	INV2000	KTA2000SL31	KTA2000SL41	KTA2000SL51	170.00
2500	INV2500	KTA2500SL31	KTA2500SL41	KTA2500SL51	180.00

KTA • • • • SL • 1

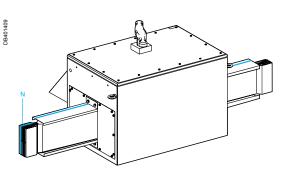
(1) See the "Trunking cross-section" table below.

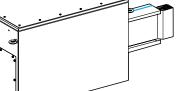


2500 A internal arcing resistant coupling isolator IP55

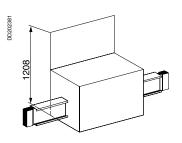
Canalis KTA

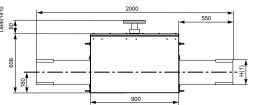
RL - Coupling isolator with Interpact INV

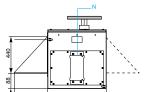



To be installed edgeways on busbar trunking, door accessible from above or below. The enclosure door is fitted with a key lock.

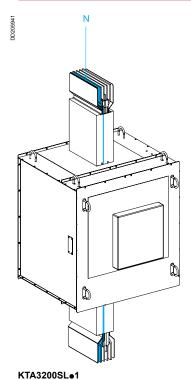
Rating	Type of switch Cat. no.			Weight
(A)	(supplied)	3L + N + PE	3L + N + PER	_ (kg)
2500	INV 2500 right	KTA2500RL61	KTA2500RL71	300.00
2500	INV 2500 left	KTA2500RL62	KTA2500RL72	300.00


This unit has a short circuit withstand lcw = 110 kA 0.1 s and an internal arcing withstand for 110 kA 0.3 s.


The coupling device can support only one closure at 80 kA. Switchdisconnector inside: Interpact INV ref: 31368 for 3P+PEN, ref:31369 for 3P+N+PER



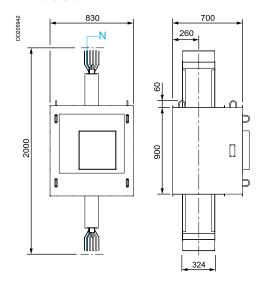
KTA2500RL62, KTA2500RL72



Schneider Belectric

Coupling isolators 3200 A IP55

SL - Masterpact NW coupling isolators

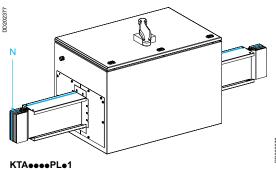

Notice: If the coupling isolator is installed on a **horizontal** busbar trunking the device must be only used as a disconnector and without any accessories (MX, XF, Motor MCH...).

Rating (A)	Type of isolator (supplied)	Cat. no. 3L + PE	3L + N + PE	3L + N + PER ⁽¹⁾	Weight (kg)
3000(2)	NW3200 HA	KTA3200SL31	KTA3200SL41	KTA3200SL51	320.00

(1) To order the 3L+N+PER version with reinforced lsc, replace KTA••••SL51 by KTA••••SL71.

(2) The use of this coupling isolator requires derating the busway run to 3000 A.

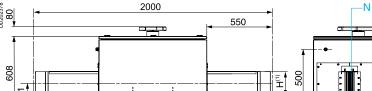
KTA3200SL●1


Protection of the run using **Compact NS circuit breakers** from 1000 à 1600 A

Canalis KTA

IP55

KTA••••PL•1


PL - Protection of the run using Compact NS circuit breakers

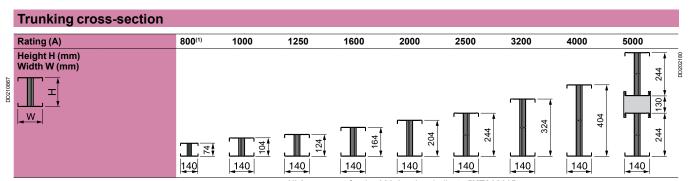
Fits equally on ducting in a flat position, on the edge or vertically. Tap-off unit door locking is achieved using a door key lock.

Rating	Type of	Cat. no.			Weight
(A)	isolator ⁽²⁾ (supplied)	3L + PE	3L + N + PE	3L + N + PER(3)	135.00
1000	NS1000 N	KTA1000PL31	KTA1000PL41	KTA1000PL51	135.00
1250	NS1250 N	KTA1250PL31	KTA1250PL41	KTA1250PL51	140.00
1600	NS1600 N	KTA1600PL31	KTA1600PL41	KTA1600PL51	150.00

1208

(1) See the "Trunking cross-section" table below.

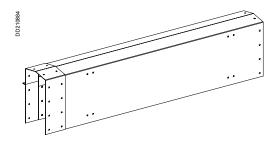
(2) Manual fixed compact NS circuit breakers type N equipped with a Micrologic 2.0 control unit.

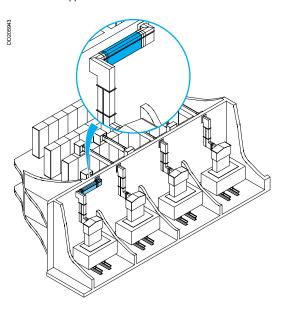

600

(3) To order the 3L+N+PER version with reinforced lsc, replace KTA••••PL51 by KTA●●●PL71.

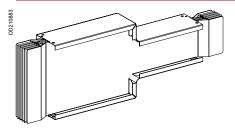
900

Protection of a run > 1600 A

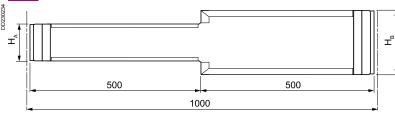

To install protection of a run > 1600 A, consult your sales office.

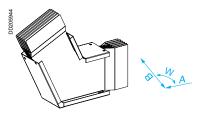

Special products

For further information about the use and the dimensions, consult your sales office.


Double skin aluminium enclosure

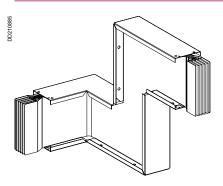
For outdoor applications.

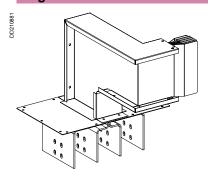

Reduction sections


For reducing busbar trunking ratings. **NOTE**: must be used in conjunction with appropriate protection.

H _A	H _B										
	74	104	124	164	204	244	324	404			
74											
104											
124											
164											
204											
244											
324											
404											

Available.


Edgewise elbow with made to measure angles

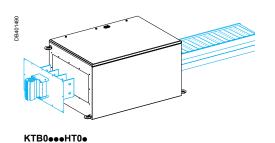

Special products

Canalis KTA

4-limb zed unit

Edgewise/flat elbow feed unit

On demand


- Surface treatment on conductors for corrosive atmospheres.
- Special colours.
- Seaworthy packaging.
- etc.

Canalis KH substitution by Canalis KT

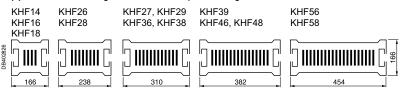
KTA/KHF connection elements

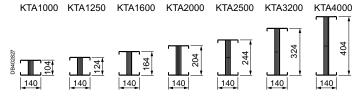
Canalis KTA or KHF

HT - Connection elements

Ratings (A)	Cat. no.			
	3L + PE	3L + N + PE	3L + N + PER	Weight (kg)
	KTB0350HT01	KTB0350HT01	KTB0350HT01	63.00
	KTB0350HT02	KTB0350HT02	KTB0350HT02	80.00
	-	-	KTB0350HT12	80.00
See the table below	KTB0510HT01	KTB0510HT01	KTB0510HT01	88.00
Delow	KTB0510HT02	KTB0510HT02	KTB0510HT02	127.00
	KTB0510HT03	KTB0510HT03	KTB0510HT03	137.00
	-	-	KTB0510HT11	88.00

End feed units (J, K, M = 115) are not included in the reference and must be ordered separately


Departures of the control of the con


Table of dimensions

	Α	В	С	D	E	F	G	Н	1
KTB0350HT01	850	331.5	518.5	300	300	600	258	208	466
KTB0350HT02	850	331.5	518.5	300	300	600	258	208	466
KTB0350HT12	850	331.5	518.5	300	300	600	258	208	466
KTB0510HT01	890	310	580	300	300	600	329	306	635
KTB0510HT02	890	310	580	300	300	600	329	306	635
KTB0510HT03	890	310	580	300	300	600	329	306	635
KTB0510HT11	890	310	580	300	300	600	329	306	635

KHF type	Rating	L busway	KT type	Rating	H busway	H flange	Connection ref.	
KHF14	1000	166	KTA1000	1000	104	230		
KHF16	1200	166	KTA1250	1250	124	230	KTB0350HT01	
KHF18	1450	166	KTA1600	1600	164	350		
KHF26	2200	238	KTA2500	2500	244	350	- KTB0350HT02	
KHF28	2500	238	KTA2500	2500	244	350	K10033011102	
KHF27	2200	310	KTA2500	2500	244	350	- KTB0350HT12	
KHF29	2500	310	KTA2500	2500	244	350	KIBUSSUHIIZ	
KHF36	3000	310	KTA3200	3200	324	510	- KTB0510HT01	
KHF38	3500	310	KTA4000	4000	404	510	- KIBUSIUHIUI	
KHF39	3500	382	KTA4000	4000	404	510	KTB0510HT11	
KHF46	4000	382	KTA4000	4000	404	510	- KTB0510HT02	
KHF48	4500	382	KTC5000 (1)	5000	404	510	- KIBUSIUHIUZ	
KHF56	5000	454	KTC5000 (1)	5000	404	510	KTB0510HT03	
KHF58	5500	454		Line exte	nsion with h	(T is not po	ssible	

(1) See the KTC catalogue for details of the product range.

KHF Polarity	KTA Polarity
3L+PE	3L+PE
3L+1/2N+PE	3L+N+PE
3L+N+PE	3L+N+PE
3L+N+PER (2)	3L+N+PER
(0)) () (() (00 0 0 0	

(2) Version with 120 mm² Cu conductor or entire conductor.

Canalis KH substitution by Canalis KT

Preserved KH tap-off units and substitution table

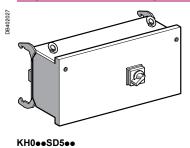
Canalis KTA

Protection type	Polarity	Rating	Catalogue number	Status	Substitued by
olator and fuse carriers	3L+PE	160	KH016SD13	Removed	KH025SD15
		250	KH025SD13	Removed	KH025SD15
		400	KH040SD13	Removed	KH063SD15
		630	KH063SD13	Removed	KH063SD15
	3L+N+PE	160	KH016SD14	Removed	KH025SD14
		250	KH025SD14	Preserved	-
		400	KH040SD14	Removed	KH063SD14
		630	KH063SD14	Preserved	-
	3L+PEN	160	KH016SD15	Removed	KH025SD15
		250	KH025SD15	Preserved	-
		400	KH040SD15	Removed	KH063SD15
		630	KH063SD15	Preserved	-
			KH063SD1530758	Removed	KH063SD15
	3L+NP+PE	160	KH016SD24	Removed	No
		250	KH025SD24	Removed	No
		400	KH040SD24	Removed	No
	<u> </u>	630	KH063SD24	Removed	No
tch and fuse carriers	3L+PE	200	KH020SD33	Removed	KH025SE351
	1	315	KH031SD33	Removed	KH040SE351
		500	KH050SD33	Removed	KH063SE351
	3L+N+PE	50	KH005SD34	Removed	KH025SE341
	1	100	KH010SD34	Removed	KH025SE341
		200	KH020SD34	Removed	KH025SE341
	1	250	KH025SE341	Preserved	-
	1	315	KH031SD34	Removed	KH040SE341
		400	KH040SE341	Preserved	-
	1	500	KH050SD34	Removed	KH063SE341
		630	KH063SE341	Preserved	-
	3L+PEN	50	KH005SD35	Removed	KH025SE351
	02 . 2	100	KH010SD35	Removed	KH025SE351
		200	KH020SD35	Removed	KH025SE351
		250	KH025SE351	Preserved	-
		315	KH031SD35	Removed	KH040SE351
		400	KH040SE351	Preserved	1(10403E331
		500	KH050SD35	Removed	KH063SE351
		630	KH063SE351	Preserved	KHUUSSESSI
	3L+NP+PE	200	KH020SD44	Removed	- No
	3L+NP+PE				
		315 500	KH031SD44	Removed	No No
	OL ANADE		KH050SD44	Removed	
uit breaker manuel	3L+N+PE	160	KH016SD541	Removed	KH025SD541
		250	KH025SD541	Preserved	-
		400	KH040SD541	Removed	KH063SD541
		630	KH063SD541	Preserved	-
	3L+PEN	160	KH016SD551	Removed	KH025SD551
		250	KH025SD551	Preserved	-
	1	400	KH040SD551	Removed	KH063SD551
		630	KH063SD551	Preserved	-
t breaker electrical control	3L+N+PE	160	KH016SD542	Removed	KH025SD542
		250	KH025SD542	Preserved	-
		400	KH040SD542	Removed	KH063SD542
		630	KH063SD542	Preserved	
	3L+PEN	160	KH016SD552	Removed	KH025SD552
		250	KH025SD552	Preserved	-
	1	400	KH040SD552	Removed	KH063SD552
		630	KH063SD552	Preserved	-
ler Isolator	3L+N+PE	630	KH063SD841	Removed	No
	3L+PEN	100	KH010SD85	Preserved	-
		250	KH025SD85	Preserved	-
		400	KH040SD85	Preserved	-
		630	KH063SD85	Preserved	-
		1000	KH063SD8502	Removed	- KH063SD85
er Isolator + Pelha	3L+PEN	400	KH040SD9502	Preserved	- N 10000D00
CI ISUIAIUI T F CIIIA	JLTF LIN	630			
a a a suitab	+	030	KH063SD9502	Preserved	- No
neco switch	-	-	KH0SD108919802	Removed	No
			KH0SD108919803	Removed	No
			KH0SD108920002	Removed	No
			KH0SD108922201	Removed	No
	1		KH0SD108922202	Removed	No
er	3L+N+PE	100	KH0SD107080401	Removed	No
		60	KH0SD107076901	Removed	No
	3L+PEN	100	KH0SD107080402	Removed	No
	-	60	KH0SD107076902	Removed	No

rotection	Polarity	Rating	Catalogue number	Status	Substitued by
lator and fuse carriers	3L+PE	160	KH016SB131	Removed	KH025SB131
			KH016SB132	Removed	KH025SB132
		250	KH025SB131	Preserved	-
			KH025SB132	Preserved	-
		400	KH040SB131	Removed	KH063SB131
			KH040SB132	Removed	KH063SB132
		630	KH063SB131	Preserved	-
			KH063SB132	Preserved	-
		1000	KH086SB131	Preserved	-
			KH086SB132	Preserved	-
			KH0SB331132	Removed	KH086SB132
	3L+N+PE	160	KH016SB141	Removed	KH025SB141
			KH016SB142	Removed	KH025SB142
		250	KH025SB141	Preserved	-
			KH025SB142	Preserved	-
		400	KH040SB141	Removed	KH063SB141
			KH040SB142	Removed	KH063SB142
		630	KH063SB141	Preserved	-
			KH063SB142	Preserved	-
		1000	KH086SB141	Preserved	-
			KH086SB142	Preserved	-
	3L+PEN	160	KH016SB151	Removed	No
			KH016SB152	Removed	No
		250	KH025SB151	Removed	No
			KH025SB152	Removed	No
		400	KH040SB151	Removed	No
			KH040SB152	Removed	No
		630	KH063SB151	Removed	No
			KH063SB152	Removed	No
		1000	KH086SB151	Removed	No
			KH086SB152	Removed	No
	3L+NP+PE	160	KH016SB241	Removed	No
			KH016SB242	Removed	No
		250	KH025SB241	Removed	No
			KH025SB242	Removed	No
		400	KH040SB241	Removed	No
			KH040SB242	Removed	No
		630	KH063SB241	Removed	No
			KH063SB242	Removed	No
		1000	KH086SB241	Removed	No
			KH086SB242	Removed	No
ch and fuse carriers	3L+PE	1000	KH086SB331	Removed	No
			KH086SB332	Removed	No
	3P+PE	250	KH025SB331	Removed	No
			KH025SB332	Removed	No
		400	KH040SB331	Removed	No
			KH040SB332	Removed	No
		630	KH063SB331	Removed	No
			KH063SB332	Removed	No
	3P+PEN	1000	KH086SB351	Removed	No
			KH086SB352	Removed	No
	3L+N+PE	250	KH025SB341	Removed	No
			KH025SB342	Removed	No
			KH025SB441	Removed	No
			KH025SB442	Removed	No
		400	KH040SB341	Removed	No
			KH040SB342	Removed	No
			KH040SB441	Removed	No
			KH040SB442	Removed	No
		630	KH063SB341	Removed	No
			KH063SB342	Removed	No
			KH063SB441	Removed	No
			KH063SB442	Removed	No
		1000	KH086SB341	Removed	No
			KH086SB342	Removed	No

Canalis KH substitution by Canalis KT

Preserved KH tap-off units and substitution table

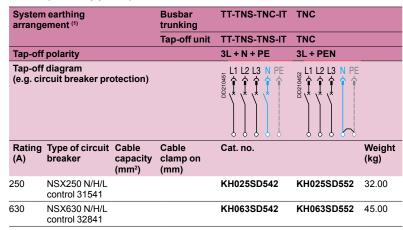

Canalis KTA

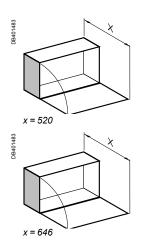
Protection	Polarity	Rating	Catalogue number	Status	Substitued by
Switch and fuse carriers (con't)	3L+PEN	250	KH025SB351	Removed	No
			KH025SB352	Removed	No
		400	KH040SB351	Removed	No
			KH040SB352	Removed	No
		630	KH063SB351	Removed	No
			KH063SB352	Removed	No
Circuit breaker manuel	3L+PE	1000	KH086SB5311	Preserved	-
			KH086SB5312	Preserved	-
	3L+N+PE	250	KH025SB5411	Removed	KH086SB5411
			KH025SB5412	Removed	KH086SB5412
		400	KH040SB5411	Removed	KH086SB5411
			KH040SB5412	Removed	KH086SB5412
		630	KH063SB5411	Removed	KH086SB5411
			KH063SB5412	Removed	KH086SB5412
		1000	KH086SB5411	Preserved	-
			KH086SB5412	Preserved	-
	3L+PEN	250	KH025SB5511	Removed	No
			KH025SB5512	Removed	No
		400	KH040SB5511	Removed	No
			KH040SB5512	Removed	No
		630	KH063SB5511	Removed	No
			KH063SB5512	Removed	No
		1000	KH086SB5511	Removed	No
			KH086SB5512	Removed	No
Circuit breaker electrical controle	3P+PEN	250	KH025SB5521	Removed	No
		400	KH040SB5521	Removed	No
		630	KH063SB5521	Removed	No
	3L+N+PE	250	KH025SB5421	Removed	No
			KH025SB5422	Removed	No
		400	KH040SB5421	Removed	No
			KH040SB5422	Removed	No
		630	KH063SB5421	Removed	No
			KH063SB5422	Removed	No
	3L+PEN	250	KH025SB5522	Removed	No
		400	KH040SB5522	Removed	No
		630	KH063SB5522	Removed	No
ircuit breaker plug-out	3L+PEN	1000	KH040DD411	Removed	No
-			KH0SB1393108	Removed	No
			KH0SB1393132	Removed	No
Others	-	1000	KH0SA345794	Removed	No
			KH0SB1041086	Removed	No
		1500	KH0SA1088568	Removed	No
		2000	KH0SA1088123	Removed	No

250 and 630 A tap-off units from **Canalis KH range for Compact NSX** circuit breakers

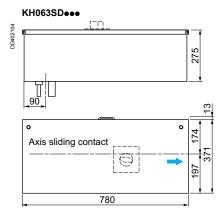
IP31

Tap-off units for Compact NSX, fixed, front-connected circuit breakers, not equipped

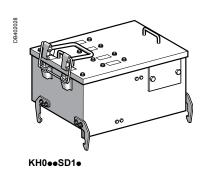

The cover of the tap-off unit may be opened or closed only when the circuit breaker


Plug-in tap-off units for extended rotary

System arrange	earthing ment ⁽¹⁾		Busbar trunking	TT-TNS-TNC-IT	TNC	
			Tap-off unit	TT-TNS-TNS-IT	TNC	
Tap-off	polarity			3L + N + PE	3L + PEN	
	diagram cuit breaker pro	tection)		L1 L2 L3 N PE	L1 L2 L3 N PE	
Rating (A)	Type of circuit breaker	Cable capacity (mm²)	Cable clamp on (mm)	Cat. no.		Weight (kg)
250	NSX250 N/H/L	1 x 150	3070	KH025SD541	KH025SD551	32.00
630	NSX630 N/H/L	2 x 300	2 x 3070	KH063SD541	KH063SD551	45.00

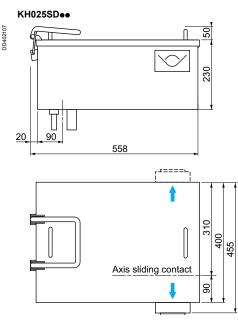

(1) These units can be fitted either on Canalis KTA or KHF.

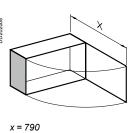
Plug-in tap-off units for motor mechanisme control 220 V -50 Hz (not supplied)



250 and 630 A tap-off units from **Canalis KH range for NF fuses IP31**

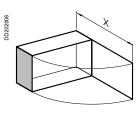
Canalis KTA


Tap-off units with isolator for blade-type fuses

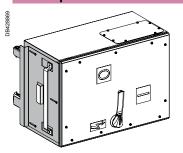


Tap-off disconnection by opening or closing the cover should be carried out only if the downstreamload is de-energised.

System earthin arrangement (1)			Busbar trunking	TT-TNS-TNC-IT	TNC	
			Tap-off unit	TT-TNS-TNS-IT	TNC	
Tap-off polarity	,			3L + N + PE	3L + PEN	
Tap-off diagran (e.g. fuse prote				L1 L2 L3 N PE	L1 L2 L3 N PE	
Rating (A)	Fuse size	Cable capacity (mm²)	Cable clamp on (mm)	Cat. no.		Weight (kg)
250	1	1 x 95	1 x 30-70	KH025SD14	KH025SD15	37.00
630	3	2 x 185	2 x 30-70	KH063SD14	KH063SD15	56.00


(1) These units can be fitted either on Canalis KTA or KHF.

Cable entry


x = 920

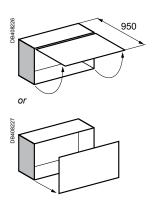
Schneider Belectric

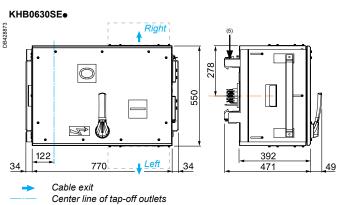
630 A tap-off units from Canalis KH range with switchdisconnector for DIN fuses

IP55

SE - Tap-off units with switch-disconnector internal arc tested IEC 61-641

KHB0630SE●

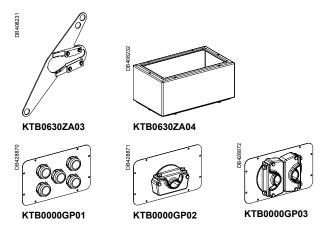

The cover of the tap-off unit may be opened or closed only when the switchdisconnector is in the Off position.


To be installed on KT EH type or on former KHF or KGF distribution length.

System earti		trunking		11-1109-110C-11	TING			
arrangement	Tap-off	unit		TT-TNS-TNS-IT(1)	TNC			
Tap-off polar	ity			3L + N + PE(2)	3L + PEN			
Tap-off diagr (e.g. fuse pro		DD230226		L1 L2 L3 N PE 8220200	L1 L2 L3 N PE			
Connection	Max. size (mm²) L or N / PE (kg)	Cable gland ⁽³⁾ (not supplied)		Cat. no.	Cat. no.	Weight (kg)		
Terminals	2 x 300 /	ISO 70 max.	Right	KHB0630SE4R		72		

Rating (A)	Type of fuses	Connection	Max. size (mm²) L or N / PE (kg)	Cable gland ⁽³⁾ (not supplied)		Cat. no.	Cat. no.	Weight (kg)
630(4)	DIN size 3	Terminals	2 x 300 / 1 x 150	ISO 70 max.	Right	KHB0630SE4R	1	72
					Left	KHB0630SE4L		72
					Right		KHB0630SE5F	? 78
					Left		KHB0630SE5L	_ 78

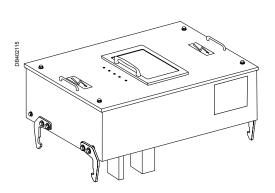
- (1) The neutral must be protected or not distributed (3L+PE) for the IT system.
- (2) Also suitable for tap-off unit 3L + PE (N not distributed, IT system also possible).
- (3) Maximum diameter by unipolar cable.
- (4) De-rating coefficient to apply: 0.87.
- (5) The tap-off unit is delivered with automatic clamps, the kit of connection bars is included in the reference and delivered in the box.



Axis of Canalis KT

Connection box to be fitted above or below

Option accessories	Cat. no.
Extension rotary handle	KTB0630ZA03
Connecting box	KTB0630ZA04
Plate with 5 cable glands 24 to 40 mm	KTB0000GP01
Plate with 1 cable clamp 30 to 70 mm	KTB0000GP02
Plate with 2 cable clamps 30 to 70 mm	KTB0000GP03

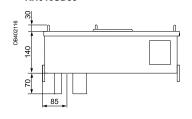


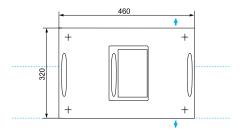
100 to 630 A tap-off units from Canalis KH with disconnector Jean Muller

Canalis KTA

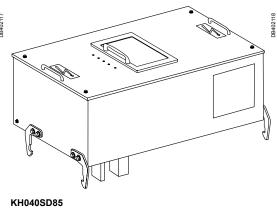
IP43

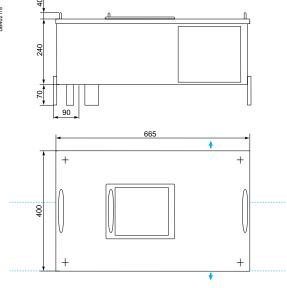
Tap-off units with disconnector Jean Muller




KH010SD85

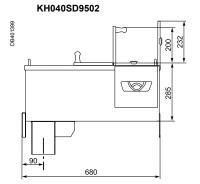
System earthing arrangement (1)			Busbar trunking	TNC	
			Tap-off unit	TNC	
Tap-off	polarity			3L + PEN	
	diagram se protection)			L1 L2 L3 N PE	
Ith (A)		Fuse size	Cable capacity (mm²)	Cat. no.	Weight (kg)
100	With MULLER disconnector	00	1 x 50	KH010SD85	12.50
250	With MULLER disconnector	1	1 x 95	KH025SD85	37.00
400	With MULLER disconnector	2	1 x 185	KH040SD85	39.00
630	With MULLER disconnector	3	2 x 185	KH063SD85	46.00

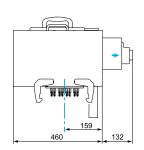

(1) These units can be fitted either on Canalis KTA or KHF.

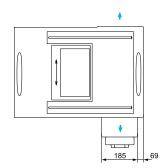

KH010SD85

KH025SD85 - KH040SD85 - KH063SD85

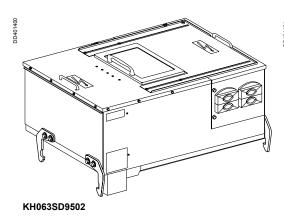
400 and 630 A tap-off units from **Canalis KH with disconnector Jean Muller**

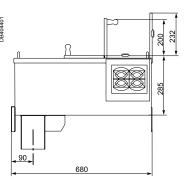

IP43

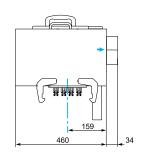

Tap-off units with disconnector internal arc tested IEC 61-641

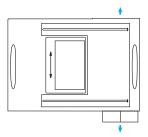


System earthing arrangement (1)		Busbar trunking	TNC	
		Tap-off unit	TNC	
Tap-off polarity			3L + PEN	
Tap-off diagram (e.g. fuse protection)			L1 12 L3 N PE	
Ith (A)	Fuse size	Cable capacity (mm²)	Cat. no.	Weight (kg)
With MULLER disconnecto	r 2	1 x 185	KH040SD9502	39.00
With MULLER disconnecto	r 3	2 x 185	KH063SD9502	46.00


(1) These units can be fitted either on Canalis KTA or KHF.



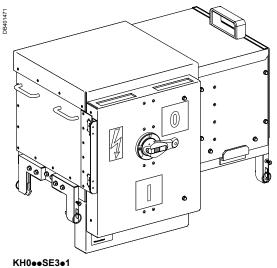




Connecting box is equipped with a 30 to 70 mm aluminium cable clamp.

Connecting plate is equipped with 4 plastic cable clamps.

If 2 cables exit are needed, stand alone connecting box can be ordered.

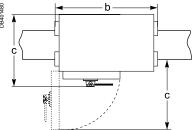

Designation	Cat. no.
Connecting box for KH040SD9502 with a 30 to 70 mm aluminium cable clamp	KH040ZA07
Connecting plate for KH063SD9502 with 4 plastic clamps	KH063ZA07

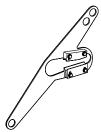
Canalis KTA

250 to 630 A tap-off units from Canalis KH range with Fupact INF fuse switch

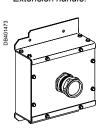
IP43

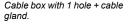
Tap-off units from Canalis KH range with Fupact INF fuse switch

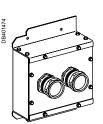

Tap-off unit installed under voltage, unloaded, for KTA2500, KTA3200, KTA4000.


Functionalities

- Insulation and protection of the outlet by Fupact fuse-switch Schneider Electric
- To be used only above or below the busbar trunking.


System earthing arrangement (1)		Busbar trunking	TT-TNS-TNC-IT	TNC		
		Tap-off unit	TT-TNS-TNS-IT	TNC		
Tap-off polari	ty		3L + N + PE	3L+ PEN		
Tap-off diagra (e.g. fuse pro			L1 L2 L3 N PE	L1 L2 L3 N PE		
Rating (A)	Ith (A)	Fuse size (DIN 43653)	Cat. no.			
250	250	1	KH025SE341	KH025SE351		
400	350	2	KH040SE341	KH040SE351		
630	500	3	KH063SE341	KH063SE351		


(1) These units can be fitted either on Canalis KTA or KHF.

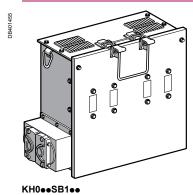


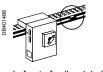
Extension handle.

Cable box with 2 hole + cable

Dimensions KHO • SE3 • 1

Dimensions (mm)	KH025SE●1	KH040SE●1	KH063SE●1
а	569	569	665
b	700	760	765
С	590	590	620
d	165	165	165
е	255	255	285
f	550	550	650


Optional accessories


Accessories	Cat. no.
Extension handle (for KH0●●SE3●1)	KH063ZA03
Cable box with 1 hole (for for KH025SE3●1) (cable gland not supplied, to be ordered separately)	KH025ZA05
Cable box with 1 hole (for for KH040SE3●1) (cable gland not supplied, to be ordered separately)	KH040ZA05
Cable box with 1 hole (for for KH063SE3●1) (cable gland not supplied, to be ordered separately)	KH063ZA05
Cable box with 2 hole (for for KH040SE3●1) (cable gland not supplied, to be ordered separately)	KH040ZA06
Cable box with 2 hole (for for KH063SE3•1) (cable gland not supplied, to be ordered separately)	KH063ZA06
Cable gland (185 - 240 mm²) for cable boxes KH0●●ZA05 and KH0●●ZA06	KH063ZA10

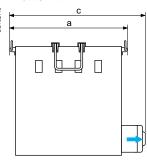
250 to 1000 A fixed tap-off units for Canalis KHF range, with isolator and fuse carriers

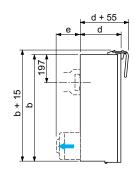
IP31

Tap-off units with isolator for blade-type fuses

In front of yellow label.

Opposite of yellow label.


The cover of the tap-off unit may be opened or closed only when the load is


System earthing arrangement (1)			Busbar trunking	IT-TT-TNS		TT-TNS-TNC-IT	(3)
			Tap-off unit	IT-TT-TNS		TT-TNS-TNS-IT	(3)
Tap-off	polarity			3L + PE		3L + N + PE	
Tap-off of (e.g. fus	e prote	ction)		L1 L2 L3 PE		L1 L2 L3 N PE	
Rating (A)	Fuse size	Cable capacity (mm²)	Cable clamp on (mm)	Cat. no. (4)	Weight (kg)	Cat. no. (4)	Weight (kg)
250	1	1 x 150	1 x 30-70	KH025SB13●	46.00	KH025SB14●	48.00
630	3	2 x 300	2 x 30-70	KH063SB13●	71.00	KH063SB14●	75.00
1000	4	4 x 185	-	KH086SB13●	86.00	KH086SB14●	90.00

- (1) To be installed only on Canalis KHF junction, do not use on Canalis KT. (3) Also suitable for tap-off unit 3L + PE (N not distributed).
- (4) The reference number ends with 1 if the tap-off unit is mounted on the identification label side. The reference number ends with 2 if the tap-off unit is mounted on the opposite side to the

Available 2021 Available 2021

KH0eeSBeee

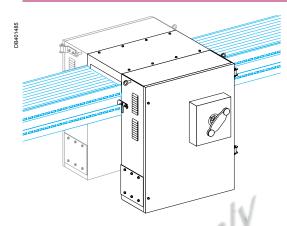
Rating (A)	а	b	С	d	е
160/250	540	500	630	265	-
400/630	640	600	750	290	-
1000	650	485	-	300	120

Connexion equipment for type SB (2) tap-off units

Note: this equipment sould be ordered at the same time as the SB tap-off unit.

Type of busbar trunking	SB tap-off unit (except 1000 A)	SB tap-off unit 1000 A only
KHF 14/16	KH016CB	KH016CB311571
KHF 18	KH018CB	KH018CB311571
KHF 26/28	KH026CB	KH026CB311571
KHF 36/38	KH036CB	KH036CB311571
KHF 46/48	KH046CB	KH046CB311571
KHF 56/58	KH056CB	KH056CB311571

(2) The neutral must be not distributed (3L + PE) for the IT system.


Catalogue numbers and dimensions

Canalis KTA

Fixed tap-off units for Canalis KHF range, for circuit breaker NS630b, NS800, NS1000

IP31

Fixed tap-off units for Canalis KHF range

n front of yellow label.

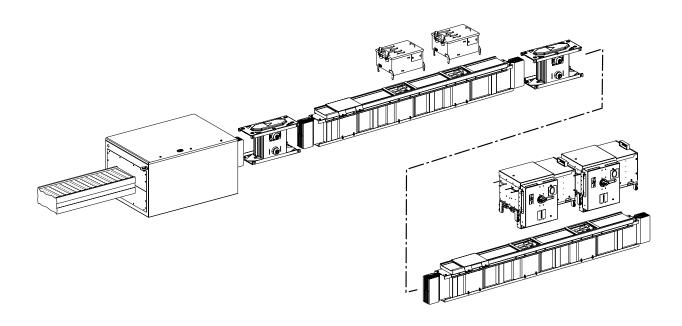
Opposite of yellow label.

- Tap-off units are installed in the joint of 2 elements (1).
- The link between tap-off unit and busbar trunking is realised by a set connecting links (see below the complementary kit catalogue numbers).
- Connection of 3 cables maxi per phase (holes Ø 14).
- Protection indice: IP31.
- Type of circuit breaker:
- □ extended rotary handle ref. 33878
- ☐ fixed device with Front connection.

System ea	rthing arr	angement (1)	Busbar trunking	IT-TT-TNS	TT-TNS-TNC-IT		
			Tap-off unit	IT-TT-TNS	TT-TNS-TNS-IT	S-IT	
Tap-off pol	larity			3L + PE	3L + N + PE		
Tap-off dia (e.g. circui		protection)		L1 L2 L3 PE	L1 L2 L3 N PE		
Rated current In 35°C (2)	Control	Type of circuit breakers	Side	Cat. no. (3)		Weight (kg)	
1000 A	Manual	N, H, L MG NS630b, NS800, NS1000 (2)	In front of yellow label	KH086SB5311	KH086SB5411	88.00	
			Opposite of yellow label	KH086SB5312	KH086SB5412	88.00	

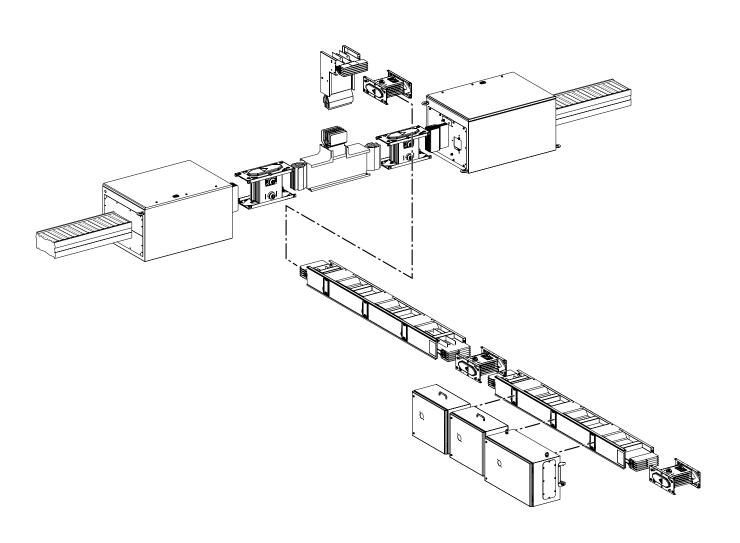
- (1) To be installed only on Canalis KHF junction, do not use on Canalis KT.
- (2) The circuit breaker more than 1000 A, with the same dimension, cannot be used on these tap-off units.
- (3) The reference number ends with 1 if the tap-off unit is mounted on the identification label side. The reference number ends with 2 if the tap-off unit is mounted on the opposite side to the label.

Connexion equipment for type SB5 tap-off units

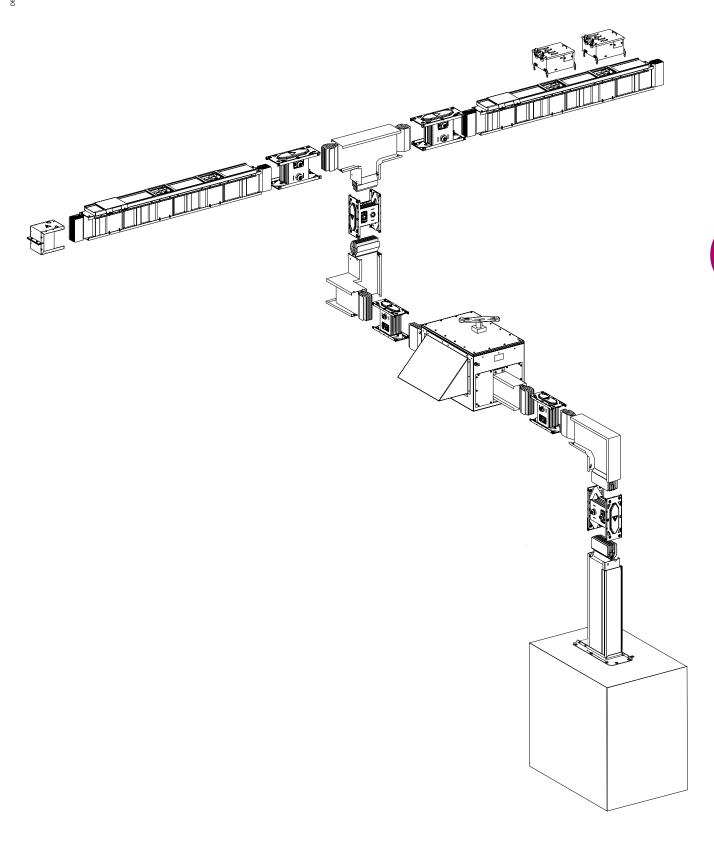


Complementary kit

Note: this equipment should be ordered at the same time as the SB tap-off unit.


Type of busbar trunking	Cat. no.	Mounting position	
KHF 14/16/18	KH018CB86NS		
KHF 26/28	KH028CB86NS		
KHF 36/38	KH038CB86NS	or .	
KHF 46/48	KH048CB86NS		
KHF 56/58	KH058CB86NS		

Expansion of a Canalis KH line by means of Canalis KT



Expansion of a Canalis KH line by means of Canalis KT with a T-piece tap-off unit

Canalis KTA

Mid KT line power supply with KH tap-off units installed

Design guide

Introduction Presentation and description Catalogue numbers and dimensions	2: 4:
Characteristics Canalis KTA 3L + PE Canalis KTA 3L + N + PE Canalis KTA 3L + N + PER	15 2 152 153 154
Other characteristics	150
Determining the rating Providing power distribution using Canalis	15 8
Sizing the busbar trunking	160
Protection of circuits supplied by several paralleled transformers	162
Coordination Protection of busbar trunking against overloads Protection against short-circuits	16 4 164 166
Circuit breaker / busbar trunking coordination Non-limiting or time-delayed circuit breaker Limiter circuit breaker	16 7 167 168
Protecting busbar trunking with a Compact NS circuit breaker	169
Selection guide	170
Degree of protection	176
Harmonic currents	178
Direct current	180
Frequencies 400 Hz	182 182
Measurements and metering Canalis part of StruxureWare	18 3
Fire resistance	186
Seismic resistance	188
Testing and commissioning procedure	190
Installation guide Recommendations Index	198 258 260

Characteristics Canalis KTA 3L + PE

Canalis KTA

			9	Symbol	Unit	Busba	r trunki	ng ratin	g (A)					
General	characte	ristics		,		800	1000	1250	1600	2000	2500	3200	4000	5000
Compliance v										C/EN 614				1555
Protection de			1	IP						55	100 0			
	9.00		·			Any inst	tallation (i	indoors o	nly) is pos		the busba	r trunckin	ng: edgew	ise,
									ndition, pa					
Shock resista				IK						08		*		
		n ambient temperature		Inc	A	800	1000	1250	1600	2000	2500	3200	4000	5000
Rated insulati				Ui	V V					1000				
Rated operating voltage Dperating frequency			f	Ue F	V Hz	50/60/	for 60 to	100 H= A	C or for D	1000	tue\			
Operating ned	quency		1		ПΖ	30700 (101 00 10 2	+00 HZ A	ים וטו וט כ	o, consul	i us)			-
Short-cir	cuit cur	rent withstand												
Standard v	ersion 3L	+ PE												
Allowable rate	ed short-time	withstand current (t =	:1s) I	lcw	kA	31	50	50	65	110	113	86	90	120
Allowable rate	ed peak curre	ent	I	lpk	kA	64	110	110	143	242	248	189	198	264
Maximum the	rmal stress I	²t (t = 1 s)	F	l²t	A ² s 10 ⁶	961	2500	2500	4225	12100	12769	7396	8100	14400
Ratings 2000	and 2500 A	are equipped in standa	ard version	with side	reinforcem	ents.								
Conduct	or chara	cteristics												
Phase cond														
		ambient temperature o	of 20°C F	R ₂₀	mΩ/m	0.079	0.057	0.046	0.035	0.028	0.023	0.017	0.014	0.011
Average resis				R ₁	mΩ/m	0.096	0.069	0.056	0.042	0.020	0.028	0.021	0.017	0.014
		and at 35°C and at 50		X ₁	mΩ/m	0.018	0.016	0.015	0.013	0.011	0.008	0.007	0.007	0.004
		and at 35°C and at 50		Z,	mΩ/m	0.097	0.071	0.058	0.044	0.035	0.029	0.022	0.018	0.014
PE = casino				_1										
	<u> </u>	ambient temperature o	of 20°C		mΩ/m	0.203	0.178	0.164	0.143	0.126	0.113	0.093	0.080	0.056
		r cross-section)	J. 20 0		mm²	120	130	140	155	165	180	190	200	360
		,												
	•	cteristics												
Symmetrical	Ph/PE	Average resistance		R _{0 ph/PE}	mΩ/m	0.809	0.676	0.587	0.490	0.420	0.370	0.303	0.256	0.185
components method	at 20°C	Average reactance		X _{0 ph/PE}	mΩ/m	0.762	0.586	0.478	0.364	0.286	0.231	0.170	0.131	0.116
		Average impedance	2	Z _{0 ph/PE}	mΩ/m	1.111	0.895	0.757	0.610	0.508	0.436	0.347	0.288	0.218
Impedance method	At 20°C	Average resistance	Ph/Ph	R _{b0 ph/ph}	mΩ/m	0.160	0.115	0.097	0.073	0.059	0.051	0.038	0.031	0.026
metriod	Atlacand	Average registeres		R _{b0 ph/PE}	mΩ/m	0.531	0.440	0.353	0.281	0.231	0.197	0.154	0.125	0.099
	At Inc and at 35°C	Average resistance		R _{b1 ph/ph}	mΩ/m mΩ/m	0.193	0.140 0.535	0.120 0.438	0.091	0.075	0.066	0.049	0.039	0.033
	At Inc and	Average reactance	Ph/Ph >	R _{b1 ph/PE}	mΩ/m	0.041	0.029	0.436	0.346	0.292	0.252	0.197	0.160	0.126
	at 35°C	Average reactance	Ph/PE	X _{b ph/ph}	mΩ/m	0.426	0.029	0.024	0.019	0.013	0.013	0.106	0.008	0.007
	and at 50 H	lz	FII/FL /	^b ph/PE	11152/111	0.420	0.329	0.273	0.212	0.170	0.141	0.100	0.004	0.07 1
Other ch	aractorio	etice												
		Sucs												
Voltage dro	рþ		· · · · · · · · · · · · · · · · · · ·				H= () () ===	- 1001		(/	\\ -+ FO			
			t t	Line-to-iin the run F	ie voltage o or the case	arop, in vo	oncentra	r 100 mei	res and p e end of a	er amp (<i>F</i>	at 50 H: oltage dr	z with ioa ons are d	a spread ouble tho	over se show
				n this tab					, oa o. a		onago an	opo a. o a	000.00	00 001.
					lation table		o three-p	hase load	ds. For sir	igle-phas	e loads, tl	ne voltage	e drop giv	en in the
					vided by 1.		0.0000	0.0040	0.0007	0.0000	0.0004	0.0040	0.0045	0.004
For a cosine q	p Of		1	1	V/100 m/A	0.0083	0.0060	0.0049	0.0037	0.0029	0.0024	0.0018	0.0015	0.0012
			(0.9	V/100	0.0081	0.0060	0.0050	0.0038	0.0030	0.0025	0.0019	0.0016	0.0012
				0.0	m/A	0.0001	0.0000	0.0000	0.0000	0.0000	0.0020	0.0013	0.0010	0.0012
			C	0.8	V/100	0.0076	0.0056	0.0047	0.0036	0.0029	0.0024	0.0018	0.0015	0.0012
					m/A									
			C	0.7	V/100	0.0069	0.0052	0.0043	0.0034	0.0027	0.0022	0.0017	0.0015	0.0011
					m/A									
A.,	. lash4													
Average we	eignt				len to	40	144	40	40	00	l or	24	l ac	5 0
3L + PE					kg/m	12	14	16	19	22	25	31	38	50
Cina lead · ·	alua													
Fire load va	aiue				138/1-7	10.4	0.0	0.0	10.6	1	I o c	0.0	144.0	140.1
					kWh/m	2.1	2.9	3.2	3.9	5.7	6.2	8.9	11.2	12.4
Radiated m		renath 1 metre from th	20 5	R	uТ	0.4	0.5	0.75	0.0	13	1.6	2.1	3.0	3.8
zaniaten mar														

μΤ

0.4

0.5

0.75

0.9

1.3

1.6

2.1

3.0

3.8

Radiated magnetic field strength 1 metre from the trunking

Canalis KTA 3L + N + PE

Protection degree	Shock resistan. Nominal rated of Rated insulatio Rated operating Operating frequency Short-circ Standard ve Allowable rated Maximum therr Reinforced of Maximum therr Reinforced of Maximum therr Reinforced of Maximum therr Conducto Phase condition Average resistant Average resistant Average imped PE = casing Average resistant Casing (equivalent of Maximum therrory	ith standards free current at an on voltage ng voltage uency cuit curre ersion 3L + d short-time of d peak curren mal stress let version 3L d short-time of d peak curren mal stress let curren mal stress let curren mal stress or charace luctors cance at an an cance at lnc an dance at lnc an dance at lnc an	ambient temperature ent withstand N + PE withstand current (t = nt (t = 1 s) . + N + PE for 250 withstand current (t = nt tteristics	1 s) 0 A and	IK Inc Ui Ue f	V V Hz kA kA A ² s 10 ⁶	Any inst flat or ve 800 50/60 (allation (i prical. Se	ndoors or te test cor	IECONIVIDENCE OF FOR DOCUMENT OF THE CONTROL OF THE	C/EN 614 55 sible for t ge 176. 08 2000 1000 1000 C, consult	39-6 he busba 2500 us)	r trunckin	g: edgew	5000
Part	Shock resistan. Nominal rated of Rated insulatio Rated operating Operating frequency Short-circ Standard ve Allowable rated Maximum therr Reinforced vallowable rated Allowable rated Average resistance Average resistance Average imped PE = casing Average resistance Casing (equival Fault loop Symmetrical components method	current at an on voltage ag voltage uency cuit current at an on voltage ag voltage uency cuit current at an all stress let version 3L + d short-time and stress let version 3L d short-time and peak current all stress let current all stress let current and stress let current	ambient temperature ent withstand N + PE withstand current (t = nt (t = 1 s) . + N + PE for 250 withstand current (t = nt cteristics	1 s) 0 A and	IK Inc Ui Ue f	V V Hz kA kA A ² s 10 ⁶	800 50/60 (1000 for 60 to 4	1250 100 Hz AC	aly) is pos dition, pa	55 sible for t ge 176. 08 2000 1000 1000 2, consult	2500	3200	4000	5000
Any installation inclosors analy is possible for the bubbler fruncising, edgewise, inflored vertical. See test continion, page 17% or \$60. Normal raised current at an ambient temperature of 30°C inc. A. 800 1000 1200 1200 1200 2500 3200 4000 500	Shock resistant Nominal rated of Rated insulatio Rated operating Operating frequit Short-circ Standard ve Allowable rated Allowable rated Maximum therr Reinforced va Allowable rated Allowable rated Maximum therr Conducto Phase condit Average resista Average resista Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components method	current at an on voltage ng voltage uency cuit current at an on voltage ng voltage uency cuit current at an all stress l'at version 3L + d short-time version 3L d short-tim	ent withstand N + PE withstand current (t = nt (t = 1 s) . + N + PE for 250 withstand current (t = nt cteristics	1 s) 0 A and	IK Inc Ui Ue f	V V Hz kA kA A ² s 10 ⁶	800 50/60 (1000 for 60 to 4	1250 100 Hz AC	1600	sible for t ge 176. 08 2000 1000 1000 c, consult	2500 us)	3200	4000	5000
Shock resistance	Nominal rated of Rated insulation Rated operating Generating Gener	current at an on voltage ag voltage uency cuit current at an at an at an at an at ance at Inc at an at ance at Inc at In	ent withstand N + PE withstand current (t = nt (t = 1 s) . + N + PE for 250 withstand current (t = nt cteristics	1 s) 0 A and	Inc Ui Ue f Icw Ipk I²t 3200 A o	V V Hz kA kA A ² s 10 ⁶	800 50/60 (1000 for 60 to 4	1250 100 Hz AC	1600	ge 176. 08 2000 1000 1000 2, consult	2500 us)	3200	4000	5000
Shock testistance	Nominal rated of Rated insulation Rated operating General Parage Rated Allowable rated Average resistated Average resistated Average imped PE = casing Average resistated Casing (equiva Fault loop Symmetrical components amethod	current at an on voltage ag voltage uency cuit current at an at an at an at an at ance at Inc at an at ance at Inc at In	ent withstand N + PE withstand current (t = nt (t = 1 s) . + N + PE for 250 withstand current (t = nt cteristics	1 s) 0 A and	Inc Ui Ue f Icw Ipk I²t 3200 A o	V V Hz kA kA A ² s 10 ⁶	800 50/60 (1000 for 60 to 4	1250 400 Hz AC	1600	08 2000 1000 1000 0, consult	us)			
Standard operating programs Ui V 1000 1	Rated insulation Rated operating Rated operating Operating frequivation Short-circ Standard ve Allowable rated Maximum therr Reinforced va Allowable rated Maximum therr Conducto Phase conducto Phase conducto Average resista Average resista Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components method	on voltage ng voltage uency Cuit curre ersion 3L + d short-time of d peak curre mal stress let version 3L d short-time of d peak curre mal stress or charace luctors cance at an ar ance at Inc ar ddance at Inc ar ddance at Inc ar	ent withstand N + PE withstand current (t = nt (t = 1 s) . + N + PE for 250 withstand current (t = nt cteristics	1 s) 0 A and	Ui Ue f	V V Hz kA kA A ² s 10 ⁶	50/60 (31 64	for 60 to 4	100 Hz AC	or for DC	1000 1000 C, consult	us)			
Name	Rated operating Operating frequency Short-Circ Standard ve Allowable rated Maximum therr Reinforced vallowable rated Allowable rated Maximum therr Conducto Phase conducto Phase conducto Average resista Average reacta Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components amethod	ng voltage uency Cuit curre ersion 3L + d short-time of d peak curre mal stress let version 3L d short-time of d peak curre mal stress or charace luctors lance at an al ance at lnc al dance at lnc al dance at lnc al	N + PE withstand current (t = nt (t = 1 s) . + N + PE for 250 withstand current (t = nt cteristics	0 A and	Icw Ipk I²t 3200 A o	V Hz kA kA A ² s 10 ⁶	31 64	50			1000 C, consult	,	86	00	Lace
Short-circuit current withstand Standard version 3L + N + PE	Short-circ Standard ve Allowable rated Allowable rated Maximum therr Reinforced v Allowable rated Maximum therr Conducto Phase conducto Phase conducto Average resista Average resista Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components method	cuit current of the property o	N + PE withstand current (t = nt (t = 1 s) . + N + PE for 250 withstand current (t = nt cteristics	0 A and	lcw lpk l²t 3200 A o	kA kA kA A ² s 10 ⁶	31 64	50			C, consult	,	86	00	Lanc
Short-circuit current withstand Standard version 3L + N + PE	Short-circ Standard ve Allowable rated Allowable rated Maximum therr Reinforced v Allowable rated Allowable rated Maximum therr Conducto Phase conducto Phase conducto Average resista Average resista Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components method	d short-time of d peak current and stress let version 3L d short-time of d peak current and stress or characteristics ance at an anance at Inc. and dance at	N + PE withstand current (t = nt (t = 1 s) . + N + PE for 250 withstand current (t = nt cteristics	0 A and	lcw lpk l²t 3200 A o	kA kA A ² s 10 ⁶	31 64	50			•	,	86	00	1400
Standard version 3L + N + PE	Standard ve Allowable rated Allowable rated Maximum therr Reinforced v Allowable rated Allowable rated Allowable rated Maximum therr Conducto Phase conducto Phase conducto Average resiste Average resiste Average imped PE = casing Average resiste Casing (equiva Fault loop Symmetrical components method	ersion 3L + d short-time of peak current mal stress 24 d short-time of peak current d peak current mal stress or charact luctors ance at an an ance at lnc an dance at lnc an dance at lnc an	N + PE withstand current (t = nt (t = 1 s) . + N + PE for 250 withstand current (t = nt cteristics	0 A and	Ipk I ² t 3200 A o Icw	kA A²s 10 ⁶	64		50	65		l a a	86	00	100
Allowable rated short-time withstand current (t = 1 s) Iow AA 31 50 50 65 70 80 86 90 120	Allowable rated Allowable rated Allowable rated Maximum therr Reinforced Vallowable rated Allowable rated Allowable rated Maximum therr Conducto Phase conducto Phase conducto Average resistate Average reactate Average imped PE = casing Average resistate Casing (equiva Fault loop Symmetrical components amethod	d short-time of peak current mail stress in the stress of	withstand current (t = nt (t = 1 s) (t = 1 s) . + N + PE for 250 withstand current (t = nt cteristics	0 A and	Ipk I ² t 3200 A o Icw	kA A²s 10 ⁶	64		50	65		Loo	86	00	1400
Millowalbe rated peak current Ipk SA 64 110 110 143 154 776 189 189 264 248 140 250 250 250 2625 400 2400 396 396 396 300 4400	Allowable rated Maximum therr Reinforced v Allowable rated Allowable rated Maximum therr Conducto Phase condit Average resiste Average resiste Average imped PE = casing Average resiste Casing (equiva Fault loop Symmetrical components method	d peak currer mal stress l²t version 3L d short-time v d peak currer mal stress or charace luctors ance at an ar ance at lnc ar dance at lnc ar dance at lnc ar	nt (t = 1 s) L + N + PE for 250 withstand current (t = nt cteristics mbient temperature o	0 A and	Ipk I ² t 3200 A o Icw	kA A²s 10 ⁶	64		50	65		00	86	00	400
Maximum thermal stress Fig. #s 9 961 2500 2500 4225 4900 6400 7366 8100 1446 8461 1446 14	Maximum therr Reinforced v Allowable rated Allowable rated Maximum therr Conducto Phase condit Average resista Average resista Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components method	mal stress l²t version 3L d short-time of peak current mal stress or charact luctors ance at an anance at Inc and	(t = 1 s) L + N + PE for 250 withstand current (t = nt cteristics mbient temperature o		1 ² t 3200 A o	A ² s 10 ⁶		110							
Reinforced version 3.1 + N + PE for 2500 A and 3200 A only Allowable rated peak current (1 = 1 s) 10w A	Reinforced v Allowable rated Allowable rated Allowable rated Maximum therr Conducto Phase conducto Average resista Average resista Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components method	version 3L d short-time of peak current mal stress or charact luctors ance at an anance at Inc and	x+N+PE for 250 withstand current (t = nt cteristics		3200 A o		961								_
Allowable rated speek current	Allowable rated Allowable rated Allowable rated Maximum therr Conducto Phase conducto Phase conducto Average resista Average reacta Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components amethod	d short-time of peak current mail stress Or charactuctors ance at an anance at Inc and ance	withstand current (t = nt cteristics		Icw	niv	001	2500	2500	4225	4900	6400	7396	8100	1440
Allowable rated peak current Ipk IsA	Allowable rated Maximum therr Conducto Phase condit Average resista Average resista Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components method	d peak currer mal stress or charace luctors ance at an ar ance at Inc ar ance at Inc ar ance at Inc ar ance at Inc ar	eteristics	15)					1	1		112	112	1	т —
Maximum thermal stress Pi	Maximum therr Conducto Phase conducto Phase conducto Average resista Average resista Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components method	or charace luctors lance at an all ance at Inc all dance at Inc all	cteristics		11.18		-	-		-		_		-	-
Conductor characteristics Phase conductors P	Phase conditation Average resistation Average resistation Average reactation Average imped PE = casing Average resistation Casing (equiva Fault loop Symmetrical components method	luctors ance at an ar ance at Inc a ance at Inc a	mbient temperature o		•		-	-	-	-				-	-
Phase conductors \[Worage resistance at an ambient temperature of 20°C	Phase conduction Average resistate Average resistate Average reactate Average imped PE = casing Average resistate Casing (equivate Fault loop Symmetrical Components Method	luctors ance at an ar ance at Inc a ance at Inc a	mbient temperature o												
Average resistance at an ambient temperature of 20°C	Average resista Average resista Average reacta Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components method	ance at an ar ance at Inc a ance at Inc a dance at Inc a	<u>'</u>												
Average resistance at Inc and at 35°C R ₁ mΩ/m 0.096 0.099 0.056 0.042 0.034 0.028 0.021 0.017 0.07 0.	Average resistate Average reactate Average imped PE = casing Average resistate Casing (equivate Fault loop Symmetrical components method	ance at Inc a ance at Inc a dance at Inc a	<u>'</u>	£ 20°C	n	mC/r	0.070	0.057	0.040	0.005	0.000	0.000	0.047	0.044	0.044
Average reactance at Inc and at 35°C and at 50 Hz Z ₁ mΩ/m 0.097 0.071 0.058 0.044 0.035 0.029 0.022 0.018 0.019 0.019	Average reacta Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components method	ance at Inc a dance at Inc a	nd at 35°C	1 20°C				-					-		
Average impedance at Inc. and at 35°C and at 50 Hz Z, mΩ/m 0.097 0.071 0.058 0.044 0.035 0.029 0.022 0.018 0.019	Average imped PE = casing Average resista Casing (equiva Fault loop Symmetrical components amethod	dance at Inc		Hz			_								0.014
PE = casing	PE = casing Average resista Casing (equiva Fault loop Symmetrical components amethod														0.004
Average resistance at an ambient temperature of 20°C mm/m 120 130 140 155 165 180 190 200 360	Average resista Casing (equiva Fault loop Symmetrical components a method	,							,			,	, <u>-</u>		1
Fault loop characteristics Symmetrical Ph/N Average resistance Symmetrical Ph/N Average impedance Symmetrical Ph/N Average impedance Symmetrical Ph/N Average impedance Symmetrical Ph/N Symmet	Fault loop Symmetrical I components a method	ance at an a	mbient temperature o	f 20°C		mΩ/m	0.203	0.178	0.164	0.143	0.126	0.113	0.093	0.080	0.056
Symmetrical Ph/N Average resistance R _{3,00,00} mG/m 0.345 0.248 0.209 0.159 0.128 0.111 0.083 0.066 0.05 0.000 0.000	Symmetrical components a method	Casing (equivalent copper cross-section)				mm²	120	130	140	155	165	180	190	200	360
Symmetrical Ph/N Average resistance R _{3,00,00} mG/m 0.345 0.248 0.209 0.159 0.128 0.111 0.083 0.066 0.05 0.000 0.000	Symmetrical components a method	n charac	tarietice	,											
Components at 20°C Average reactance Asyon mΩ/m 0.143 0.103 0.087 0.067 0.064 0.046 0.035 0.028 0.022 0.066 0.087 0.067 0.064 0.046 0.035 0.028 0.022 0.066 0.086 0.087 0.067 0.067 0.064 0.046 0.035 0.028 0.022 0.066 0.086 0.087 0.067 0.067 0.068 0.087 0.067 0.067 0.067 0.067 0.067 0.067 0.069 0.072 0.068 0.027 0.068 0.028 0.027 0.068 0.028 0.027 0.068 0.028 0.027 0.068 0.028 0.027 0.068 0.028 0.027 0.068 0.028 0.027 0.068 0.028 0.027 0.068 0.028 0.027 0.068 0.028 0.027 0.068 0.028 0.027 0.068 0.028 0.027 0.068 0.028 0.027 0.028 0.027 0.068 0.028 0.027 0.068 0.028 0.0	components a method				R	mO/m	0.345	0 248	0.209	0 159	0 128	0 111	0.083	0.066	0.056
Average impedance Z _{gyn/N} mΩ/m 0.373 0.269 0.226 0.172 0.139 0.120 0.090 0.072 0.06 0.18 0.120 0.090 0.072 0.06 0.18 0.120 0.072 0.06 0.18 0.120 0.072 0.06 0.18 0.120 0.072 0.06 0.18 0.120 0.072 0.073 0.050 0.073 0.073 0.050 0.073 0.073 0.073 0.050 0.073 0.074 0.075	į														0.023
Ph/PE Average resistance Average resistance Average resistance Average impedance Ph/Ph Rutinity Mispinsh M															0.060
At 20°C Average reactance Average impedance Average imped	i	Ph/PE	Average resistance			mΩ/m	0.809	0.676	0.587	0.490	0.420	0.370	0.303	0.256	0.185
Impedance method At 20 °C Average resistance Ph/Ph Ph/N R _{olgarite method} Ph/Ph Ph/N R _{olgarite method} Ph/Ph Ph/N R _{olgarite method} Rolgarite method Ph/Ph R _{olgarite} Rolgarite method Ph/Ph Rolgarite method Rolgarite method Ph/Ph Rolgarite method Ph/Ph		at 20°C	Average reactance		$X_{0 ph/PE}$	mΩ/m		0.586	0.478	0.364	0.286	0.231	0.170	0.131	0.116
Ph//N R _{Sopunts MΩ/m 0.161 0.115 0.097 0.074 0.059 0.052 0.039 0.031 0.02 Ph//P R_{Sopunts MΩ/m 0.153 0.440 0.353 0.281 0.231 0.197 0.154 0.125 0.096 At lnc and Average resistance Ph//Ph R_{Sopunts MΩ/m 0.193 0.140 0.120 0.091 0.075 0.066 0.049 0.039 0.03 Ph//P R_{Sopunts MΩ/m 0.194 0.140 0.120 0.092 0.075 0.066 0.049 0.039 0.03 Ph//P R_{Sopunts MΩ/m 0.194 0.140 0.120 0.092 0.075 0.066 0.049 0.039 0.03 Ph//P R_{Sopunts MΩ/m 0.044 0.120 0.092 0.075 0.066 0.049 0.039 0.03 Ph//P R_{Sopunts MΩ/m 0.044 0.120 0.092 0.075 0.066 0.049 0.039 0.03 Ph//P R_{Sopunts MΩ/m 0.046 0.047 0.040 0.030 0.024 0.010 0.010 0.010 0.008 0.00 Ph//P R_{Sopunts MΩ/m 0.042 0.047 0.040 0.030 0.024 0.021 0.016 0.013 0.01 Ph//P R_{Sopunts MΩ/m 0.426 0.329 0.275 0.212 0.170 0.141 0.106 0.084 0.07 Other characteristics Line-to-line voltage drop, in volts (v) per 100 metres and per amp (A) at 50 Hz with load spread over the run. For the case of loads concentrated at the end of a run, the voltage drops are double those shot in this table. This calculation table applies to three-phase loads. For single-phase loads, the voltage drops are double those shot in this table. This calculation table by 1.732. Ph//P Ph//P R_{Sopunts MΩ/m 0.0060 0.0060 0.0049 0.0037 0.0024 0.0018 0.0015 0.00 Ph//P R_{Sopunts MΩ/m 0.0060 0.0060 0.0049 0.0030 0.0024 0.0018 0.0015 0.00 Ph//P R_{Sopunts MΩ/m 0.0060 0.0060 0.0047 0.0036 0.0029 0.0024 0.0018 0.0015 0.00 Ph//P R_{Sopunts MΩ/m 0.0060 0.0050 0.0047 0.0036 0.0029 0.0024 0.0018 0.0015 0.00 Ph//P R_{Sopunts MΩ/m 0.0060 0.0050 0.0047 0.0036 0.0029 0.0024 0.0018 0.0015 0.00 Ph//P R_{Sopunts MΩ/m 0.0060 0.0050 0.0047 0.0036 0.0029}}}}}}}}}}}}}}}}															0.218
Ph//PE Rope Ph//PE Ro		At 20°C	Average resistance	Ph/Ph	R _{b0 ph/ph}										_
## At Inc. and at 35°C Ph/Ph Ryphoph mΩ/m 0.193 0.140 0.120 0.091 0.075 0.066 0.049 0.039 0.03 0.03 Ph/PE Ryphom mΩ/m 0.641 0.535 0.438 0.348 0.292 0.252 0.197 0.160 0.12 At Inc and Average reactance A 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	metriou				R _{b0 ph/N}										
Ph/N R _{S1,Rh/N} mΩ/m 0.194 0.140 0.120 0.092 0.075 0.066 0.049 0.039 0.036 0.049 0.039 0.036 0.049 0.036 0.049 0.030 0.040 0.029 0.024 0.019 0.015 0.016 0.013 0.010 0.008 0.004 0.029 0.024 0.019 0.015 0.016 0.013 0.010 0.008 0.004 0.029 0.024 0.019 0.015 0.016 0.013 0.010 0.008 0.004 0.029 0.024 0.019 0.015 0.013 0.010 0.008 0.004 0.029 0.024 0.019 0.015 0.013 0.010 0.008 0.004 0.029 0.024 0.021 0.016 0.013 0.010 0.008 0.004 0.029 0.024 0.021 0.016 0.013 0.010 0.008 0.004 0.029 0.024 0.021 0.016 0.013 0.010 0.008 0.004 0.008 0.004 0.029 0.024 0.021 0.016 0.013 0.010 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004 0.008 0.004	-	At Inc and			R										_
Ph/PE Rst paper Rst pap			7 Wordgo Toolotanoo		R _{b4 = b/M}										0.033
At Inc and Average reactance at 35°C ph/Ph At yperlym ph/N At yperlym mΩ/m 0.040 0.029 0.024 0.019 0.015 0.013 0.010 0.008 0.00					R _{b1 ph/PF}			-							0.126
At 35°C and at 50 Hz and at 50	-	At Inc and	Average reactance	Ph/Ph	X _{b ph/ph}	mΩ/m	0.040	0.029	0.024	0.019	0.015	0.013	0.010	0.008	0.007
Other characteristics Voltage drop Line-to-line voltage drop, in volts (V) per 100 metres and per amp (A) at 50 Hz with load spread over the run. For the case of loads concentrated at the end of a run, the voltage drops are double those sho in this table. This calculation table applies to three-phase loads. For single-phase loads, the voltage drop given in table is divided by 1.732. For a cosine φ of V/100				Ph/N	$X_{b ph/N}$										0.011
Line-to-line voltage drop, in volts (V) per 100 metres and per amp (A) at 50 Hz with load spread over the run. For the case of loads concentrated at the end of a run, the voltage drops are double those show in this table. This calculation table applies to three-phase loads. For single-phase loads, the voltage drop given in table is divided by 1.732. For a cosine φ of 1		and at 50 Hz	-	Ph/PE	X _{b ph/PE}	mΩ/m	0.426	0.329	0.275	0.212	0.170	0.141	0.106	0.084	0.071
the run. For the case of loads concentrated at the end of a run, the voltage drops are double those show in this table. This calculation table applies to three-phase loads. For single-phase loads, the voltage drop given in table is divided by 1.732. For a cosine φ of 1			tics												
in this table. This calculation table applies to three-phase loads. For single-phase loads, the voltage drop given in table is divided by 1.732. For a cosine φ of 1															
For a cosine φ of 1					in this tabl This calcu	e. Ilation table	applies t				ŕ	Ü	•		
m/A 0.9 V/100 0.0081 0.0060 0.0050 0.0038 0.0030 0.0025 0.0019 0.0016 0.00 0.00 0.00 0.0016 0.00 0.0016 0.00 0.0016 0.0016 0.0018 0.0015 0.0018 0.0015 0.0018 0.0015 0.0018 0.0015 0.0018 0.0015 0.0018 0.0015 0.0018 0.0015 0.0018 0.0015 0.0018	For a cosine or	of						0.0060	0.0049	0.0037	0.0029	0.0024	0.0018	0.0015	0.001
m/A 0.8 V/100 0.0076 0.0056 0.0047 0.0036 0.0029 0.0024 0.0018 0.0015 0.00						m/A									
0.8					0.9		0.0081	0.0060	0.0050	0.0038	0.0030	0.0025	0.0019	0.0016	0.001
m/A 0.7 V/100 0.0069 0.0052 0.0043 0.0034 0.0027 0.0022 0.0017 0.0015 0.00					0.8		0.0076	0.0056	0 0047	0.0036	0 0020	0 0024	0.0018	0 0015	0.001
m/A					3.0			5.5555	0.0047	3.0000	5.0020	0.0024	5.5515	3.5515	
Average weight 3L + N + PE					0.7	V/100	0.0069	0.0052	0.0043	0.0034	0.0027	0.0022	0.0017	0.0015	0.001
3L + N + PE	A	11-4				III/A		<u> </u>	I			I	<u> </u>	<u> </u>	<u> </u>
Fire load value		ignt				ka/m	13	16	18	22	26	30	37	45	60
kWh/m 2.5 3.6 4.1 5.9 7.3 8.0 11.5 14.4 16 Radiated magnetic field Radiated magnetic field strength 1 metre from the B μT 0.4 0.5 0.75 0.9 1.3 1.6 2.1 3.0 3.8	VL 111 T T E	-				Ng/III	13	10	10		20	100	101	73	100
Radiated magnetic field Radiated magnetic field strength 1 metre from the B μT 0.4 0.5 0.75 0.9 1.3 1.6 2.1 3.0 3.8	Fire load val	lue													1.
Radiated magnetic field strength 1 metre from the B μ T 0.4 0.5 0.75 0.9 1.3 1.6 2.1 3.0 3.8						kWh/m	2.5	3.6	4.1	5.9	7.3	8.0	11.5	14.4	<u> </u> 16
	Radiated ma	agnetic fie	ld												
	Radiated magn			е	В	μΤ	0.4	0.5	0.75	0.9	1.3	1.6	2.1	3.0	3.8

Characteristics

Canalis KTA 3L + N + PER

With an internal aluminium PE conductor

Canalis KTA

	eristics o			Symbol	Unit	Busba	r trunki	ng ratin	a (A)					
General	characte	ristics		5,111501	J	800	1000	1250	1600	2000	2500	3200	4000	5000
Compliance v						000	1000	.200		Z/EN 614		0200	1000	0000
Protection de		<u> </u>		IP					1,2,	55	00 0			
	J					Any ins	tallation (i	ndoors o	nly) is pos	sible for t	he busba	r trunckin	ıg: edgew	ise,
						flat or v	ertical. Se	e test cor	ndition, pa					
Shock resista				IK				1		80			1	
		n ambient temperature	e of 35°C		A	800	1000	1250	1600	2000	2500	3200	4000	5000
Rated insulat				Ui	V					1000				
Rated operation				Ue f	V	50./00./	f CO t- /	100 - 40) f D(1000				
Operating fre	quency			Т	Hz	50/60(for 60 to 4	IUU HZ AU	OF TOT DO	, consult	us)	,		
Short-cir	cuit curi	ent withstand												
Allowable rate	ed short-time	withstand current (t =	1 s)	lcw	kA	31	50	50	65	70	80	86	90	120
Allowable rate	ed peak curre	ent		lpk	kA	64	110	110	143	154	176	189	198	264
Maximum the	rmal stress l	²t (t = 1 s)		I ² t	A ² s 10 ⁶	961	2500	2500	4225	4900	6400	7396	8100	14400
Conduct	or chara	cteristics												
Phase con		Cleristics												
		ambient temperature o	ıf 20°C	R ₂₀	mΩ/m	0.079	0.057	0.046	0.035	0.028	0.023	0.017	0.014	0.0115
Average resis		· · · · · · · · · · · · · · · · · · ·		R ₁	mΩ/m	0.096	0.069	0.056	0.033	0.020	0.028	0.021	0.017	0.011
		and at 35°C and at 50	Hz	X ₁	mΩ/m	0.018	0.016	0.015	0.013	0.004	0.008	0.007	0.007	0.004
		and at 35°C and at 50		Z ₁	mΩ/m	0.097	0.071	0.058	0.044	0.035	0.029	0.022	0.018	0.0145
		um protective con			•				*			•	•	
		ambient temperature o			mΩ/m	0.065	0.052	0.046	0.037	0.031	0.028	0.022	0.018	0.014
Aluminium cr	oss-section	•			mm²	210	300	360	480	600	720	960	1200	1440
		40 = 104 00												
Fault loo	•	_		Ъ	O /	0.045	0.040	0.000	0.450	0.400	0.444	0.000	0.000	0.050
Symmetrical components	Pn/N at 20°C	Average resistance		R _{0 ph/N}	mΩ/m	0.345	0.248	0.209	0.159	0.128	0.111	0.083	0.066	0.056
method	at 20 C	Average impedance		X _{0 ph/N}	$m\Omega/m$ $m\Omega/m$	0.143	0.103 0.269	0.087	0.067 0.172	0.054 0.139	0.046 0.120	0.035	0.028	0.023
	Ph/PE	Average impedance Average resistance		$Z_{0 ph/N}$ $R_{0 ph/PE}$	mΩ/m	0.373	0.269	0.220	0.172	0.139	0.120	0.090	0.072	0.000
	at 20°C	Average reactance		X _{0 ph/PE}	mΩ/m	0.236	0.168	0.142	0.108	0.087	0.133	0.057	0.045	0.038
		Average impedance		Z _{0 ph/PE}	mΩ/m	0.534	0.381	0.321	0.243	0.196	0.171	0.127	0.102	0.086
Impedance	At 20°C	Average resistance	Ph/Ph	R _{b0 ph/ph}	mΩ/m	0.160	0.115	0.097	0.073	0.059	0.051	0.038	0.031	0.026
method			Ph/N	R _{b0 ph/N}	mΩ/m	0.161	0.115	0.097	0.074	0.059	0.052	0.039	0.031	0.026
			Ph/PE	R _{b0 ph/PE}	mΩ/m	0.177	0.128	0.108	0.082	0.066	0.058	0.043	0.034	0.029
	At Inc and	Average resistance	Ph/Ph	R _{b1 ph/ph}	mΩ/m	0.193	0.140	0.120	0.091	0.075	0.066	0.049	0.039	0.033
	at 35°C		Ph/N	R _{b1 ph/N}	mΩ/m	0.194	0.140	0.120	0.092	0.075	0.066	0.049	0.039	0.033
			Ph/PE	R _{b1 ph/PE}	mΩ/m	0.214	0.155	0.133	0.102	0.084	0.075	0.056	0.036	0.038
	At Inc and	Average reactance	Ph/Ph	$X_{b ph/ph}$	mΩ/m	0.040	0.029	0.024	0.019	0.015	0.013	0.010	0.008	0.007
	at 35°C and at 50 H	7	Ph/N	$X_{b ph/N}$	mΩ/m	0.064	0.047	0.040	0.030	0.024	0.021	0.016	0.013	0.011
			Ph/PE	$X_{b ph/PE}$	mΩ/m	0.095	0.069	0.058	0.044	0.036	0.031	0.023	0.019	0.016
Other ch	aracteris	stics												
Voltage dro														
	· P			Line-to-lir	ne voltage o	drop, in vo	lts (V) pe	r 100 met	res and p	er amp (A	at 50 H	z with loa	d spread	over
				the run. F	or the case									
				in this tab		a applica i	o throo n	haaa laad	lo Forcin	alo phao	alaada ti	ao voltog	o drop giv	on in the
					ılation table vided by 1.		о инее-р	11456 1090	is. FUI SIN	yı c -priasi	= ioaus, ti	ie voltage	= arop giv	C11 111 (11)
For a cosine	p of			1	V/100	0.0083	0.0060	0.0049	0.0037	0.0029	0.0024	0.0018	0.0015	0.0012
	•				m/A									
				0.9	V/100	0.0081	0.0060	0.0050	0.0038	0.0030	0.0025	0.0019	0.0016	0.0012
					m/A	0.000	0.00==					0.05:	0.05:=	0.55
				0.8	V/100 m/A	0.0076	0.0056	0.0047	0.0036	0.0029	0.0024	0.0018	0.0015	0.0012
				0.7	V/100	0.0069	0.0052	0.0043	0.0034	0.0027	0.0022	0.0017	0.0015	0.0011
				0.7	m/A	0.0009	0.0002	0.0043	0.0034	0.0027	0.0022	0.0017	0.0013	0.0011
						-								-
Average w	eight													
3L + N + PER					kg/m	15	19	21	26	31	36	46	56	72
Fire load v	alue					,		-	,	•	•	•	•	
					kWh/m	2.5	3.6	4.1	5.9	7.3	8.0	11.5	14.4	16
Radiated m	nagnetic fie	eld				_		•			-	-		
Radiated magnetic field				В	μT	0.4	0.5	0.75	0.9	1.3	1.6	2.1	3.0	3.8
Radiated magnetic field strength 1 metre from the trunking														

With an internal copper PE conductor and reinforced Icw

				Symbol	Unit		r trunki		ĭ ` ′					
General of						800	1000	1250	1600	2000	2500	3200	4000	5000
Compliance v		S		IP		-			IE	C/EN 614	39-6			
Protection de	gree			IP		Anyine	tallation (i	ndoore o	alv) ie nos	55 sible for t	ho bucha	r trunckir	a. odaon	ico
							ertical. Se				ne busba	I LI UI ICKII	ig. eugew	ise,
Shock resista	nce			IK						08				
Nominal rated	d current at ar	n ambient temperature	e of 35°C	Inc	Α	800	1000	1250	1600	2000	2500	3200	4000	5000
Rated insulati	ion voltage			Ui	V					1000				
Rated operati				Ue	V					1000				
Operating free	quency			f	Hz	50/60(for 60 to 4	100 Hz A0	or for D	C, consult	us)			
Short-cir	cuit curr	ent withstand												
Allowable rate	ed short-time	withstand current (t =	1 s)	Icw	kA	35	65	65	85	110	113	113	120	120
Allowable rate	ed peak curre	ent		lpk	kA	73	143	143	187	242	248	248	264	264
Maximum thermal stress			I ² t	A ² s.10 ⁶	1225	4225	4225	7225	12100	12769	12769	14400	14400	
Conduct	or chara	cteristics												
Phase con														
		mbient temperature o	f 20°C	R ₂₀	mΩ/m	0.079	0.057	0.046	0.035	0.028	0.023	0.017	0.014	0.0115
Average resis		'		R ₁	mΩ/m	0.096	0.069	0.056	0.042	0.034	0.028	0.021	0.017	0.014
Average reac	tance at Inc a	and at 35°C and at 50	Hz	X ₁	mΩ/m	0.018	0.016	0.015	0.013	0.011	0.008	0.007	0.007	0.004
Average impe	edance at Inc	and at 35°C and at 50) Hz	Z ₁	mΩ/m	0.097	0.071	0.058	0.044	0.035	0.029	0.022	0.018	0.0145
		protective conduc					•	•						
		mbient temperature o	f 20°C		mΩ/m	0.050	0.039	0.034	0.026	0.022	0.019	0.014	0.012	0.0095
Copper cross-section			mm²	210	300	360	480	600	720	960	1200	1440		
Fault loo	p charac	cteristics												
Symmetrical		Average resistance		R _{0 ph/N}	mΩ/m	0.345	0.248	0.209	0.159	0.128	0.111	0.083	0.066	0.056
components	at 20°C	Average reactance		X _{0 ph/N}	mΩ/m	0.143	0.103	0.087	0.067	0.054	0.046	0.035	0.028	0.023
method		Average impedance		$Z_{0 ph/N}$	mΩ/m	0.373	0.269	0.226	0.172	0.139	0.120	0.090	0.072	0.060
	Ph/PE	Average resistance		R _{0 ph/PE}	mΩ/m	0.247	0.186	0.160	0.125	0.102	0.087	0.067	0.054	0.044
	at 20°C	Average reactance		X _{0 ph/PE}	mΩ/m	0.111	0.087	0.077	0.062	0.017	0.045	0.035	0.029	0.023
	A+ 20°C	Average impedance		Z _{0 ph/PE}	mΩ/m	0.270	0.205	0.177	0.139	0.104	0.098	0.075	0.061	0.049
Impedance method	At 20°C	Average resistance	Ph/Ph Ph/N	R _{b0 ph/ph}	mΩ/m mΩ/m	0.160 0.161	0.115 0.115	0.097	0.073	0.059 0.059	0.051 0.052	0.038	0.031	0.026
mounou			Ph/PE	R _{b0 ph/N}	mΩ/m	0.101	0.113	0.097	0.074	0.059	0.032	0.039	0.031	0.020
	At Inc and	Average resistance	Ph/Ph	R _{b1 ph/ph}	mΩ/m	0.193	0.140	0.120	0.004	0.075	0.066	0.049	0.039	0.033
	at 35°C	, it of ago roolotanoo	Ph/N	R _{b1 ph/N}	mΩ/m	0.194	0.140	0.120	0.092	0.075	0.066	0.049	0.039	0.033
			Ph/PE	R _{b1 ph/PE}	mΩ/m	0.162	0.120	0.102	0.078	0.065	0.055	0.041	0.035	0.028
	At Inc and	Average reactance	Ph/Ph	X _{b ph/ph}	mΩ/m	0.040	0.029	0.024	0.019	0.015	0.013	0.010	0.008	0.007
	at 35°C and at 50 H	_	Ph/N	$X_{b ph/N}$	mΩ/m	0.064	0.047	0.040	0.030	0.024	0.021	0.016	0.013	0.011
	and at 50 m.		Ph/PE	$X_{b ph/PE}$	mΩ/m	0.047	0.037	0.032	0.026	0.022	0.019	0.014	0.012	0.010
Other ch	aracteris	stics												
Voltage dro	р													
					ne voltage									
				run. For the	ne case of l	oads con	centrated	at the en	d of a run	the volta	ge drops	are doub	le those s	shown in
					ulation table	e applies t	o three-p	hase load	ls. For sin	ale-phase	e loads, th	ne voltag	e drop aiv	en in the
					vided by 1.					3.0 p			p 3 · ·	
For a cosine of	p of			1	V/100	0.0083	0.0060	0.0049	0.0037	0.0029	0.0024	0.0018	0.0015	0.0012
				0.0	m/A V/100	0.0081	0.0060	0.0050	0.0038	0.0030	0.0025	0.0019	0.0016	0.0012
				0.9	m/A	0.0081	0.0060	0.0050	0.0038	0.0030	0.0025	0.0019	0.0016	0.0012
				0.8	V/100	0.0076	0.0056	0.0047	0.0036	0.0029	0.0024	0.0018	0.0015	0.0012
					m/A									
				0.7	V/100	0.0069	0.0052	0.0043	0.0034	0.0027	0.0022	0.0017	0.0015	0.0011
					m/A									<u> </u>
Average we	eiaht													
3L + N + PER					kg/m	15	19	21	26	31	36	46	56	72
Fire load va					1.3		1		1				1	1
					kWh/m	2.5	3.6	4.1	5.9	7.3	8.0	11.5	14.4	16
Radiated m	nagnetic fie	eld												-
				_	_			0.75					0.0	4.5
Radiated mad	gnetic field str	rength 1 metre from th	e	В	μT	0.4	0.5	0.75	0.9	1.3	1.6	2.1	3.0	4.5

Other characteristics

Canalis KTA

Characteristics of run sections

Other characteristics

Choice of products when harmonics are present (see "harmonic currents" for more details).

THD ≤ 15 %	15 % < THD ≤ 33 %	THD > 33 %	Busbar trunking	Rating (A)
800	630	500	KTA	800
1000	800	630	KTA	1000
1200	1000	800	KTA	1250
1600	1250	1000	KTA	1600
2000	1600	1250	KTA	2000
2500	2000	1600	KTA	2500
3200	2500	2000	KTA	3200
4000	3200	2500	KTA	4000
5000	4000	3200	KTA	5000

Example. For a total rms current of 2356 A (estimation based on power drawn by loads, including harmonics), the operational current is 2500 A. THD is estimated at 30 %. The appropriate trunking is KTA 3200 A.

Allowable current as a function of ambient temperature

Canalis busbar trunking is sized to operate at an ambient air which does not exceed +40°C and its average over a period of 24 h does not exceed +35°C. Above this value, the busbar trunking must be derated.

Where k1 = ambient temperature derating coefficient.

	Symbol	Unit	Ambiant temperature 24 hours average				
		°C	35	40	45	50	55
Busbar trunking installed indoors	k1	%	k1=1	k1=0.97	k1=0.93	k1=0.90	k1=0.86
Busbar trunking installed outside under an aluminium roof	k1	%	See "Busbar trunking installed outside under an aluminium roof" on page 159.				
Busbar trunking installed in a fire duct	k1	%	Please, see your sales office.				

Through-wall fire barrier

Tests performed in accordance with the requirements of NF EN 1363-1 and those specific to EN 1366-3.

	Performance criteria	Performance criteria						
	Fire integrity	Thermal insulation						
Without external fire barrier	120 mn	30 mn						
With external fire barrier	120 mn	120 mn						

Tap-off unit characteristics

General characteristics	Symbol	Unit	
Protection degree	IP		55
Shock resistance	IK		08
Rated insulation voltage	Ui	V	400 or 500 depending on protection device
Rated operating voltage	Ue	V	
Operating frequency	f	Hz	50/60

Derating to apply to the KTA5000

Installation type	Utilisation						
	Transport	Distribution					
Edgewise installation	0.96	0.9					
Flatwise installation	0.85	0.85					

Determining the rating

Providing power distribution using Canalis

Canalis KTA

Apart from extreme atmospheres, Canalis can be installed anywhere!

The order described below is only aimed at presenting the different stages for a simple installation.

For a detailed design, it is necessary to use appropriate tools, approved by control bodies, in compliance with local installation standards.

The **Ecodial** software, edited by Schneider Electric, meets this requirement perfectly.

Design order:

- 1 Define run layouts.
- 2 Identify external influences.
- 3 Determine the current rating (lb).
- 4 Calculate the nominal current (In) taking into account derating coefficients.
- 5 Choose the busbar trunking rating.
- 6 Check the rating with respect to allowable voltage drop.
- 7 Check busbar trunking overloads.
- 8 Check the rating with respect to short-circuit withstand current.
- 9 Choose the source and feeder circuit breakers.

1 - Canalis busbar trunking layout

The layout of the distribution runs depends on the position of the loads and where the source is located.

Load protection is placed in the tap-off boxes, at the point of use.

A single and same Canalis busbar trunking supplies a group of loads of different ratings.

Schneider Electric has tools you can use to help you choose the architecture best suited to your application:

- the Idpro software to simulate the organisation of your electrical networks
- application orientated technical guides (car industry, data centers, shopping centres, etc).

2 - Identification of external influences

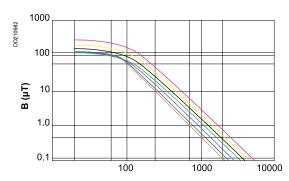
Protection degree

Canalis KT busbar trunking is IP55 and IPxxD by construction.

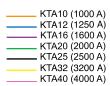
This protection degree protects the busbar trunking against:

- penetration by a 1mm diameter wire
- water projections from all directions.

It can be installed in almost all premises; for more details see the "Determining the protection degree" "Degree of protection IP", page 176.


Wherever the busbar trunking must pass outside the building, an aluminium roof can be supplied; consult your Schneider Electric distributor for information concerning this option.

Corrosive atmosphere

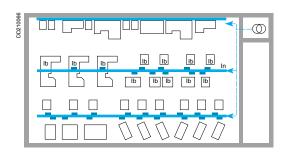

The busbar trunking has been qualified for industrial atmospheres.

For sulphurous atmospheres such as sulphur dioxide (SO₂) and hydrogen sulphide (H₂S), there is a suitable Canalis KT solution; consult your Schneider Electric distributor for more information on this option.

Example: paper mills, water treatment works, etc.

distance from the center of the Busbar (mm)

Radiated electromagnetic fields


According to the WHO (World Health Organisation), exposure to radiated electromagnetic fields above 0.2 micro Tesla can be dangerous causing a risk of cancer over the long term. Some countries have standardised the limit: Sweden = 0.2 μ T, at a distance of 1 metre.

All electrical conductors generate a magnetic field, the strength of which is proportional to the distance between them. The Canalis busbar trunking concept (metal casing and conductors near together) helps to considerably reduce radiated electromagnetic fields.

In specific cases where particularly low values are required (computer rooms, hospitals, some offices), it is important to keep in mind the following:

- the induction generated around 3-phase distribution. This is proportional to the current and the distance between the conductors, and inversely proportional to the square of the distance with respect to the busbar trunking and the screening effect of the case
- \blacksquare the induction generated around busbar trunking. This is less than the induction generated around an equivalent cable distribution
- Canalis' steel casing. This attenuates the induction more than an equivalent aluminium casing of the same thickness (screening effect)
- the induction generated around busbar trunking with sandwiched bars. This is particularly low because of the short distance between the bars and the additional attenuation provided by the steel casing.

3 - Determining the current rating (lb)

Calculation of the total current (lb) absorbed by a run is equal to the sum of the currents absorbed by all of the loads.

The loads do not all operate at the same time and, as they are not continuously at full load, a stacking or simultaneity factor Ks has to be taken into account: Ib = Σ Ib load x Ks

Stacking factor Ks depending on the number of loads according to IEC 61439-1

Application	Number of loads	Ks coefficient
Lighting, heating	-	1
Distribution	23	0.9
(mechanic workshop)	45	0.8
	69	0.7
	1040	0.6
	40 and over	0.5

Caution: for industrial installations, remember to take into account future increases in the number of machines. A 20 % reserve is recommended.

4 - Calculating nominal current (In) by applying a derating coefficient

Ambient temperature

Canalis busbar trunking is sized to operate at an average ambient temperature of +35°C. Above this value, the busbar trunking must be derated.

Example: Canalis KTA1250 A installed inside with an ambient temperature of 45° C: In = $1250 \times 0.93 = 1162$ A.

 $ln \ge lb \times k1 = lz$

Where k1 = ambient temperature derating coefficient.

Type of installation		Canalis KT	Ambient temperature 24 hours average (°C)					
			35	40	45	50	55	
Busbar trunking installed inside	\mathbb{I}	All	1	0.97	0.93	0.90	0.86	
Busbar trunking installed outside under an aluminium roof	$\widehat{\mathbb{T}}$	All	0.86	0.83	0.80	0.77	0.74	
Busbar trunking installed in a fire duct			Please, s	see your sa	ales office.			

Sizing the busbar trunking

Canalis KTA

5 - Choosing the busbar trunking rating according to the nominal current In

Nominal current In (A)	Busbar trunking
0 to 800	KTA0800
801 to 1000	KTA1000
1001 to 1250	KTA1250
1251 to 1600	KTA1600
1601 to 2000	KTA2000
2001 to 2500	KTA2500
2501 to 3200	KTA3200
3201 to 4000	KTA4000
4001 to 5000	KTA5000

6 - Checking the rating with respect to allowable voltage drop

The voltage drop between the start and all points of use must not be greater than the values in the table below:

Installation supplied by:	Lighting	Other use
Low voltage public distribution network	3 %	5 %
High voltage distribution network	6 %	8 %

The allowable voltage drop is that which is compatible with correct load operation (refer to manufacturers' guides).

- Read voltage drop in V/100 m/A for the busbar trunking chosen in accordance with temperature rise.
- Determine the voltage drop for the worst case loads, i.e. those furthest from the source and for the highest current.

If the voltage drop exceeds allowable limits, choose the next rating up. Re-check the voltage drop for the new rating.

Voltage drop, in volts per 100 metres and per amp for 3-phase 50 Hz current with load spread over the run. For loads concentrated at the end of a run (transport), the voltage drops are double those shown in the table below:

Delta U for e	Delta U for evenly distributed loads (V/100m/A)								
	KTA08	KTA10	KTA12	KTA16	KTA20	KTA25	KTA32	KTA40	KTA50
Cosine $\varphi = 1$	0.0083	0.0060	0.0049	0.0037	0.0029	0.0024	0.0018	0.0015	0.0012
Cosine $\varphi = 0.9$	0.0081	0.0060	0.0050	0.0038	0.0030	0.0025	0.0019	0.0016	0.00125
Cosine φ = 0.8	0.0076	0.0056	0.0047	0.0036	0.0029	0.0024	0.0018	0.0015	0.0012
Cosine $\varphi = 0.7$	0.0069	0.0052	0.0043	0.0034	0.0027	0.0022	0.0017	0.0015	0.0011

Example: for the KTA1600 A busbar trunking:

1b = 1530 A

In = 1600 A

Length L = 87 m

Cosine φ = 0.8.

According to the above table, the voltage drop coefficient for 100 metres and per amp is equal to 0.0036 V/100 m/A.

 $0.0036 \times 0.87 \times 1530 = 4.79 \text{ V}$

For a voltage = 400 V, in percentages:

4.79/400 = 0.0119 that is to say 1.2 %.

7 - Protecting against busbar trunking overloads

To allow for extensions, the busbar trunking is generally protected at its nominal current Inc (or its allowable current Iz if the ambient temperature coefficient k1 is applied).

■ Circuit breaker protection:

□ adjust Ir of the circuit breaker such that:

 $Iz = Ib \times k1 \le Ir \le Inc$

Circuit breaker protection allows the Canalis busbar trunking to be used at full capacity because the standardised nominal current In of the circuit breaker is $\ln \leq \ln c / K2$ where K2 = 1.

■ Protection using gG (gI) fuse:

 \square determine the standardised nominal current In of the fuse such that: In \le Inc/K2 where K2 = 1.1.

□ choose the standardised rating In that is equal to or just lower.

Check the following condition: $In \ge Ib \times k1 = Iz$.

If this condition is not met, choose the busbar trunking with the next rating up.

Note: using gI fuses for protection means reducing the busbar trunking's allowable current.

8 - Checking the rating and choice of circuit breaker with respect to short-circuit withstand current

Short-circuit current withstand is shown in the table below.

This value must be greater than the prospective short-circuit current, at all points of the installation.

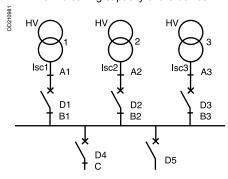
- Calculate the short-circuit current value at the worst case points.
- Check the chosen rating allows the busbar trunking to cope with this short-circuit current.
- If this is not the case, there are 2 possible solutions:
- choose a higher rating busbar trunking and re-check
- provide a peak current limiting protection system upstream of the busbar trunking.

Warning: regarding the TNS or TNC earthing system, based on the value of L-PE fault loop impedance and the level of L-PE short-circuit, choose the correct coordination between the protection and the busbar trunking.

Canalis KT is more than sized to cope with short-circuit currents.

Some specific cases require checks to be carried out; transforme

Some specific cases require checks to be carried out: transformers in parallel, low rating Canalis installed close to a transformer, etc.


Protection of circuits supplied by several paralleled transformers

Canalis KTA

9 - Choosing source and feeder circuit breakers according to the number and rating of the supply transformers

The choice of a circuit breaker to protect a circuit depends mainly on the following 2 criteria:

- the nominal current of the source or the loads, which determines the appropriate rating of the device
- the maximum short-circuit current at the point in question, which determines the minimum breaking capacity of the device.

For the case of several parallel transformers(1):

- the source circuit breaker D1 must have a breaking capacity greater than the largest of the 2 following values:
- □ either lsc1 (short-circuit at B1)
- □ or lsc2 + lsc3 (short-circuit at A1)
- the feeder circuit breaker D4 must have a breaking capacity greater than Isc1 + Isc2 + Isc3.

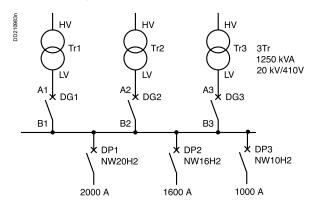
The table allows the following to be determined:

- the source circuit breaker, according to the number and rating of the supply transformers (in the case of a single transformer, the table recommends a fixed circuit breaker; in the case of several transformers, the table shows a drawout circuit breaker and a fixed circuit breaker)
- the feeder circuit breaker, according to the sources and the nominal current rating of the feeder (the circuit breakers shown in the table can be replaced by limiter circuit breakers if the cascading technique is to be used with other circuit breakers downstream of the feeder).
- (1) To couple several transformers in parallel, the transformers must have the same Usc, the same transformation ratio, the same coupling and the ratio of the power rating of the 2 transformers must be less than or equal to 2.

Example:

3 incoming 1250 kVA transformers 20 kV/410 V (In = 1760 A).

Feeders: including one 2000 A feeder, one 1600 A feeder and one 1000 A feeder. What circuit breakers should be fitted at the incomer and for the feeders?


■ Incomer circuit breakers:

either the Drawout Masterpact NW20N1 or the Drawout NS2000N circuit breakers can be chosen. The choice will depend on the options required.

■ Feeder circuit breakers:

the NW20H2 for the 2000 A feeder, the NW16H2 for the 1600 A feeder and the NW10H2 for the 1000 A feeder are to be chosen.

These circuit breakers have the advantage of providing discrimination (full discrimination) with the NW12H1 or NS1250N circuit breakers.

Calculation assumption:

- the upstream network short-circuit power is not defined
- the transformers are 20 kV/410 V
- between each transformer and corresponding circuit breaker there is 5 metres of KT busbar trunking
- between a source circuit breaker and a feeder circuit breaker there is 1 metre of
- the equipment is installed into a switchboard with an ambient temperature of 40°C.

P (kVA) In (Transformer			Source circuit breaker	i ecuci	Feeder circuit breaker					
(1.1.7.1)	` '	Usc (%)	lsc (kA)	min. break. cap. (kA)		min. break. cap. (kA)	≤ 100 A	160 A	250 A	400 A	630 A	
1 transforme	ner											
50 70	4	4	2	2	NSX100N TM-D/STR22SE	2	NSX100N					
100 141	1 4	4	4	4	NSX160N TM-D/STR22SE	4	NSX100N	NSX160N				
160 225	5 4	4	6	6	NSX250N TM-D/STR22SE	6	NSX100N	NSX160N	NSX250N			
250 352	2 4	4	9	9	NSX400N STR23SE/53UE	9	NSX100N	NSX160N	NSX250N	NSX400N		
400 563	3 4	4	14	14	NSX630N STR23SE/53UE	14	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N	
630 887	7 4	4	22	22	NS1000N NT10H1 NW10N1 Micrologic	22	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N	
800 112	27 (6	19	19	NS1250N NT12H1 NW12N1 Micrologic	19	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N	
1000 140	08	6	23	23	NS1600N NT16H1 NW16N1 Micrologic	23	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N	
1250 176	60	6	29	29	NW20N1 Micrologic	29	NSX100H	NSX160N	NSX250N	NSX400N	NSX630N	
1600 225	53 (6	38	38	NW25H1 Micrologic	38	NSX100H	NSX160H	NSX250H	NSX400N	NSX630N	
2000 281	16	6	47	47	NW32H1 Micrologic	47	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H	
2500 352	21 (6	59	59	NW40H1 Micrologic	59	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H	
2 transform	ners											
50 70	4	4	2	2	NSX100N TM-D/STR22SE	4	NSX100N	NSX160N				
100 141	1 4	4	4	4	NSX160N TM-D/STR22SE	7	NSX100N	NSX160N	NSX250N			
160 225	5 4	4	6	6	NSX250N TM-D/STR22SE	11	NSX100N	NSX160N	NSX250N	NSX400N		
250 352	2 4	4	9	9	NSX400N STR23SE/53UE	18	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N	
400 563	3 4	4	14	14	NSX630N STR23SE/53UE	28	NSX100H	NSX160N	NSX250N	NSX400N	NSX630N	
630 887	7 4	4	22	22	NS1000N NT10H1 NW10N1 Micrologic	44	NSX100H	NSX160H	NSX250H	NSX400N	NSX630N	
800 112	27 (6	19	19	NS1250N NT12H1 NW12N1 Micrologic	38	NSX100H	NSX160H	NSX250H	NSX400N	NSX630N	
1000 140	08	6	23	23	NS1600N NT16H1 NW16N1 Micrologic	47	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H	
1250 176	60	6	29	29	NW20N1 Micrologic	59	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H	
1600 225	53 6	6	38	38	NW25H1 Micrologic	75	NSX100L	NSX160L	NSX250L	NSX400L	NSX630L	
2000 281	16	6	47	47	NW32H1 Micrologic	94	NSX100L	NSX160L	NSX250L	NSX400L	NSX630L	
2500 352	21 (6	59	59	NW40H1 Micrologic	117	NSX100L	NSX160L	NSX250L	NSX400L	NSX630L	
3 transform	ners											
50 70	4	4	2	4	NSX100N TM-D/STR22SE	5	NSX100N	NSX160N	NSX250N			
100 141	1 4	4	4	7	NSX160N TM-D/STR22SE	11	NSX100N	NSX160N	NSX250N	NSX400N		
160 225	5 4	4	6	11	NSX250N TM-D/STR22SE	17	NSX100N	NSX160N	NSX250N	NSX400N	NSX630N	
250 352	2 4	4	9	18	NSX400N STR23SE/53UE	26	NSX100H	NSX160N	NSX250N	NSX400N	NSX630N	
400 563	3 4	4	14	28	NSX630N STR23SE/53UE	42	NSX100H	NSX160H	NSX250H	NSX400N	NSX630N	
630 887	7 4	4	22	44	NS1000N NT10L1 NW10H1 Micrologic	67	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H	
800 112	27 (6	19	38	NS1250N NT12H1 NW12N1 Micrologic	56	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H	
1000 140	08	6	23	47	NS1600N NW16H1 Micrologic	70	NSX100H	NSX160H	NSX250H	NSX400H	NSX630H	
1250 176	60	6	29	59	NS2000N NW20N1 Micrologic	88	NSX100L	NSX160L	NSX250L	NSX400L	NSX630L	
1600 225	53 (6	38	75	NS2500N NW25H2 Micrologic	113	NSX100L	NSX160L	NSX250L	NSX400L	NSX630L	
2000 281	16	6	47	94	NS3200N NW32H2 Micrologic	141	NSX100L	NSX160L	NSX250L	NSX400L	NSX630L	

Usc values as defined in HD 428.

Coordination

Protection of busbar trunking against overloads

Canalis KTA

Introduction

System performance is guaranteed by coordination between the Schneider Electric circuit breaker protection and the distribution spread over the Canalis busbar

Fully coordinated distributed electrical distribution perfectly meets the requirements of safety, service continuity, system changes and simplicity.

In the following pages, we will explain the advantages of the Schneider Electric system and Schneider Electric circuit breaker protection, as well as the selection guide tables for coordination between the Schneider Electric circuit breakers and the Canalis busbar trunking.

The use of Schneider Electric circuit breakers provides:

- protection against overloads and short-circuits;
- coordination between the protective devices and the Canalis busbar trunking:
- □ full discrimination from 1 to 6300 A between all the circuit breakers of the Schneider Electric ranges
- □ cascading:
- reinforcement of the small and medium power busbar trunking short-circuit protective devices. This enables all short-circuit levels to be covered
- protection of tap-offs using standard circuit breakers: this is achieved whatever the position of the tap-off unit on the Canalis busbar trunking
- the use of standard circuit breakers makes for simpler design whilst respecting a high level of dependability
- fault location is quick and easy
- resetting is easy once the fault has been cleared by the site operator.

Adequacy between circuit breaker ratings and busbar trunking

In order to take into consideration thermal overload protection of busbar trunking, the different technologies of the protection switchgear and the maximum overload operating currents must be considered.

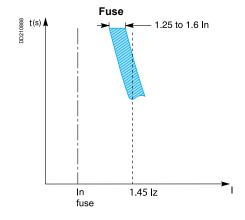
By design, the thermal adjustment of a circuit breaker is more accurate.

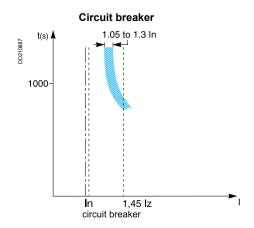
- Iz = Ib x k1 x k2
- □ lb : current rating
- ☐ Iz : allowable busbar trunking current
- □ k1 : temperature derating coefficient
- □ k2 : derating coefficient linked to the type of switchgear:
 - fuse k2 = 1.1
 - circuit breaker k2 = 1.
- \blacksquare Iz = Ib x k1.
- In = I standardised fuse or circuit breaker.

For a current rating Ib = 1900 A in an ambient temperature of 35°C:

- fuse protection:
 - $Iz = Ib \times k1 \times k2 = 1900 \times 1 \times 1.1 = 2090 A$

The correct choice of busbar trunking is the KTA25 (Iz = 2500 A)


■ circuit breaker protection:


 $Iz = Ib \times k1 \times k2 = 1900 \times 1 \times 1 = 1900 A$

The correct choice of busbar trunking is the KTA20 (Iz = 2000 A), A difference of 20 % in the measurement of operating currents results in an overrating of the busbar trunking of 10 % if it is protected by fuses.

Explanations

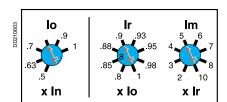
- Calibration of thermal asymptotes:
- □ the distribution fuse is calibrated to operate for overloads of between 1.25 and 1.6 times its nominal current (In fuse)
- □ the circuit breaker is calibrated to operate for overloads of between 1.05 and 1.3 times (1.2 for circuit breakers with electronic protection) its setting current (Ir which is a function of circuit breaker In).
- Maximum operating current:
- □ the maximum limit for this current is set by installation standards (IEC 364, NFC 15-100, etc) at 1.45 times the allowable current of the busbar trunking.

Thermal setting accuracy

■ A fuse is for a fixed rating, a change in the current to be protected requires a change of fuse.

The spacing between 2 fuse ratings is around 25 %.

The typical ratings are conform to the numbers of the "Renard" series. Example: 40 - 50 - 63 - 80 - 100 - 125 - 160 - 200 - etc.


- The circuit breaker provides the possibility of fine adjustment:
- □ 5 % for circuit breakers fitted with standard thermal-magnetic trip units
- □ 3 % for circuit breakers fitted with electronic trip units.

A circuit breaker with a nominal rating of 100 A can be easily set to the following values:

Ir = 100 A, 95 A, 90 A, 85 A, 80 A.

A circuit breaker with a nominal rating of 1600 A set at 1440 A would be used to protect a KTA1600 (Inc = 1440 A) busbar trunking used in an ambient temperature of 50° C (k1 = 0.9).

Setting range of circuit breakers fitted with electronic trip units

Example of setting possibilities.

Circuit breakers fitted with electronic trip units have the following setting ranges:

- thermal protection Ir adjustable from 0.4 In to In
- short-circuit protection adjustable from 2 Ir to 10 Ir

Example:

A 250 A circuit breaker (NS250N fitted with an STR22SE) can easily have the following settings:

- thermal protection from 100 to 250 A
- short-circuit protection from 200 to 2500 A.

Avdantages

This provides great flexibility for:

- modifications (flexibility), extensions (installation changes): the protective devices easily adapt to the load to be protected and to the earthing system (protection of personnel and equipment)
- maintenance, the use of this type of device considerably reduces the stocks of maintenance components.

Coordination

Protection against short-circuits

Canalis KTA

Busbar trunking characteristics

Circuit breaker characteristics

The busbar trunking must meet all of the rules detailed in IEC 61439-1 and IEC 61439-6.

The sizing of busbar trunking for short-circuits is determined by the following characteristics:

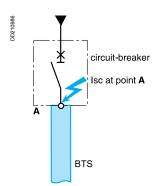
■ the allowable rated peak current lpk (kÂ).

This characteristic represents the busbar trunking's instantaneous electrodynamic withstand limits. The peak current value is often the most restrictive instantaneous characteristic for the protective device

■ the maximum short-time withstand rms current lcw (kArms/s).

This characteristic represents the allowable temperature rise limit of the conductors during a given time period (0.1 to 1s)

■ the thermal stress in A2s.

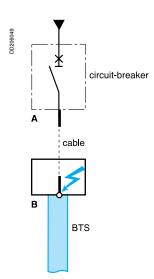

This characteristic represents the instantaneous thermal stress withstand of the busbar trunking. In general, if the short-circuit generates fault conditions compatible with the first two characteristics, this constraint is "automatically satisfied".

The circuit breaker must satisfy the requirements of product construction standards (IEC 60947-2, etc) and installation standards (IEC 60364 or those in force in the country concerned), i.e. have a breaking capacity lcu⁽¹⁾ greater than the prospective short-circuit current Isc at the point where it is installed.

(1) Installation standard IEC 60364 and construction standards specify the breaking capacity of a circuit breaker as being:

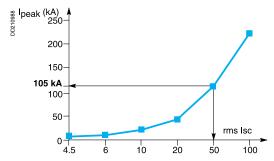
- the ultimate breaking capacity, Icu, if it is not coordinated with an upstream protective device,
- the reinforced breaking capacity (cascading) if there is coordination with the upstream protective device.

Circuit breaker/busbar trunking system characteristics

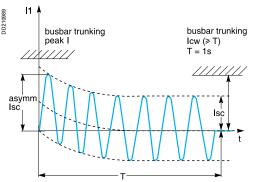


When the busbar trunking is directly protected, the circuit breaker must be chosen

- Icu of the circuit breaker > prospective Isc at point A
- I peak of the busbar trunking > prospective asymmetrical or limited lsc at point A
- busbar trunking thermal withstand lcw > thermal stress through the busbar trunkina.


When the busbar trunking is protected downstream of a cable, the circuit breaker must be chosen as follows:

- Icu of the circuit breaker > prospective Isc at point A
- I peak of the busbar trunking > prospective asymmetrical or limited lsc at point B
- busbar trunking thermal withstand lcw > thermal stress through the busbar trunking.



Circuit breaker/busbar trunking coordination

Non-limiting or time-delayed circuit breaker

Current value of the 1st peak as a function of lsc rms.

Transient and established conditions of a short duration short-circuit.

This is applicable for non-limiting circuit breakers (instantaneous or time-delayed) and time-delayed limiting circuit breakers.

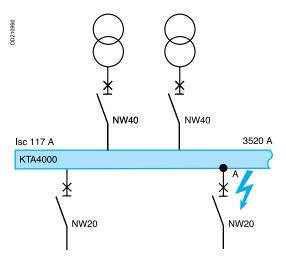
These are mainly air circuit breakers (≥ 800 A).

This type of circuit breaker is used for time discrimination and is therefore often associated with KT type busbar trunking.

It must be checked that the busbar trunking can handle the peak fault current to which it may be subjected and the thermal withstand during any time delay. The allowable peak current (I peak) of the busbar trunking must be greater than the peak current value of the prospective asymmetrical short-circuit current (Isc asym) at Δ

The asymmetrical short-circuit current value is obtained by multiplying the symmetrical short-circuit current value (Isc) by a standardised asymmetrical coefficient (k).

It is the first value of the 1st transient asymmetrical peak of the short-circuit which is taken into account.


Standardised table for calculating asymmetrical short-circuit values

lsc: prospective symmetrical short- circuit value	Asymmetrical coefficient
kA (rms value)	k
4,5 ≤ I ≤ 6	1.5
6 < I ≤ 10	1.7
10 < I ≤ 20	2.0
20 < I ≤ 50	2.1
50 < I	2.2

Example

For a circuit with a prospective short-circuit current of 50 kA rms, the 1st peak reaches 105 kÅ (50 kA x 2.1), see figure opposite.

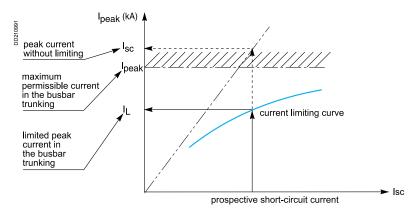
The short-time withstand value (Icw) of the busbar trunking must be greater than the current flowing through the installation during the duration of the short-circuit (Isc) (duration T - total breaking time - including any time delay).

At point A, the prospective short-circuit current is 117 kArms. To meet this constraint, a reinforced KTA4000 is needed because: Icw KTA4000 > Isc prospective at point A.

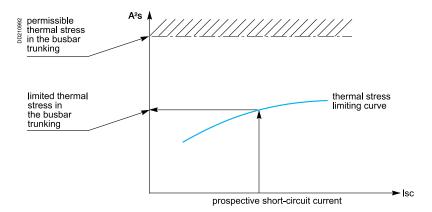
The lcw or lpk values of standard or reinforced KTA trunking allow the easy construction of circuits with time discrimination, even with high short-circuit values.

Circuit breaker/busbar trunking coordination

Limiter circuit breaker


Canalis KTA

This is mainly applicable to the protection of busbar trunking using moulded case circuit breakers (≤ 1600 A).


This type of circuit breaker is used for energy discrimination and is therefore often associated with Canalis KTA.

Here, it has to be checked that the busbar trunking can cope with the peak current (lpk) limited by the protective device and the corresponding thermal stress (A2s):

- the peak current (I peak), once limited by the circuit breaker, must be less than the allowable peak current value of the busbar trunking
- the thermal stress, once limited by the circuit breaker, must be less than the allowable thermal stress of the busbar trunking.

Checking peak I withstand of the busbar trunking.

Checking A2s withstand of the busbar trunking.

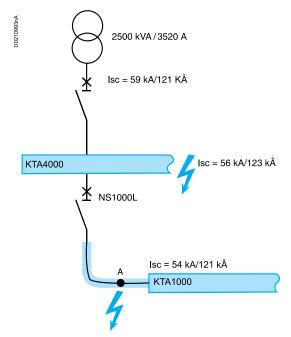
Protecting busbar trunking with a Compact NS circuit breaker

Limiting capacity

Compact NS circuit breakers are high current limiting circuit breakers. The limiting capacity of a circuit breaker is its capacity to only allow a limited current (IL) to flow in the event of a short-circuit. This limited current being less than the prospective asymmetrical peak short-circuit current (Isc). This greatly reduces the electrodynamic and thermal constraints on the installation to be protected.

Applying limiting capacity to busbar trunking protection

Even if this combination is less frequent than for KS busbar trunking, some KT ratings can benefit from the association with a limiter circuit breaker.


High power installation

If the circuit breaker's limiting capacity is not taken into account:

- the prospective short-circuit current value (Isc) at point A would be 121 kÂ
- KTA1600 would be the appropriate choice of busbar trunking.

If the limiting capacity of the Compact NS1000L is taken into account, the limited lpk is 50 kÅ < 110 kÅ of the KTA1000 busbar trunking.

Because of the high limiting capacity of the Compact NS1000L, a KTA1000 busbar trunking can be installed into a prospective short-circuit current at point A of 150 kA rms or 300 kÅ.

Selection guide

Canalis KTA

The selection guide below will, according to the prospective short-circuit current of the installation, allow you to determine the type of circuit breaker needed to fully protect the busbar trunking.

Example: for an installation with a prospective lsc of 150 kA, the circuit breaker needed to protect a KTA1250 A busbar trunking is a **NS100L** or **NT10L1** (the rating depends on the circuit's nominal current).

For a voltage of 380/415 V

Type of Cana	lis busbar trunking		1	1	I		The second
			50 kA	65 kA	85 kA	100 kA	150 kA
Type of circuit		NSX630F (≥ 36 kA)	NSX630N/H/S/L	NSX630H/S/L	NSX630S/L	NSX630S/L	NSX630L
oreaker	Compact NS	NS630bN			NS630bL		NS630bLE
		NS800N			NS800L		NS800LB
		NS1000N			NS1000L		
	Masterpact MTZ1	MTZ1 06 H1/H2/H3/L1	MTZ1 06 L1				
		MTZ1 08 H1/H2/H3/L1	MTZ1 08 L1				
		MTZ1 10 H1/H2/H3/L1	MTZ1 10 L1				
	Masterpact MTZ2	MTZ2 08 N1/H1/H2/L1					
		MTZ2 10 N1/H1/H2/L1					
	Masterpact NT	NT06 H1			NT06 L1		
		NT08 H1			NT08 L1		
		NT10 H1			NT10 L1		
	Masterpact NW	NW08H1					
		NW10H1					
Type of Cana	alis busbar trunking	KTA0800 Reinforce					
	lsc max kArms	30 kA	50 kA	65 kA	85 kA	100 kA	150 kA
ype of circuit	Compact NSX	NSX630F (≥ 36 kA)	NSX630N/H/S/L	NSX630H/S/L	NSX630S/L	NSX630S/L	NSX630L
oreaker	Compact NS	NS630bN				NS630bL	NS630bLE
		NS800N				NS800L	NS800LB
		NS1000N				NS1000L	
	Masterpact MTZ1	MTZ1 06 H1/H2/H3/L1	MTZ1 06 L1				
		MTZ1 08 H1/H2/H3/L1	MTZ1 08 L1				
		MTZ1 10 H1/H2/H3/L1	MTZ1 10 L1				
	Masterpact MTZ2	MTZ2 08 N1/H1/H2/L1					
		MTZ2 10 N1/H1/H2/L1					
	Masterpact NT	NT06 H1				NT06 L1	
		NT08 H1				NT08 L1	
		NT10 H1				NT10 L1	
	Masterpact NW	NW08H1					
		NW10H1					
Type of Cana	alis busbar trunking	KTA1000					
	Isc max kArms	42 kA	50 kA	65 kA	85 kA	100 kA	150 kA
Type of circuit	Compact NS		NS800N				NS800L
reaker			NS1000N				NS1000L
			NS1250N				
	Masterpact MTZ1	MTZ1 08 H1/H2/H3/L1	MTZ1 08 H2/H3/L1	MTZ1 08 L1			
		MTZ1 10 H1/H2/H3/L1	MTZ1 10 H2/H3/L1	MTZ1 10 L1			
		MTZ1 12 H1/H2/H3	MTZ1 12 H2/H3				
	Masterpact MTZ2	MTZ2 08 N1/H1/H2/L1	MTZ2 08 H1/H2/L1				
		MTZ2 10 N1/H1/H2/L1	MTZ2 10 H1/H2/L1				
		MTZ2 12 N1/H1/H2/L1	MTZ2 12 H1/H2/L1				
	Masterpact NT	NT08H1	NT08H2			1	NT08L1
		NT10H1	NT10H2			1	NT10L1
		NT12H1	NT12H2				
	Masterpact NW	NW08N1	NW08H1			1	
		NW10N1	NW10H1			1	
_		NW12N1	NW12H1				
Type of Cana	ilis busbar trunking	KTA1000 Reinforce					
	lsc max kArms	42 kA	50 kA	65 kA	85 kA	100 kA	150 kA
Type of circuit	Compact NS		NS800N	NS800H		1	NS800L
oreaker			NS1000N	NS1000H		1	NS1000L
				NS1250H			
	Masterpact MTZ1	MTZ1 08 H1/H2/H3/L1	MTZ1 08 H2/H3/L1	MTZ1 08 H3/L1	MTZ1 08 L1		
		MTZ1 10 H1/H2/H3/L1	MTZ1 10 H2/H3/L1	MTZ1 10 H3/L1	MTZ1 10 L1		
		MTZ1 12 H1/H2/H3	MTZ1 12 H2/H3	MTZ1 12 H3			
	Masterpact MTZ2	MTZ2 08 N1/H1/H2/L1	MTZ2 08 H1/H2/L1		MTZ2 08 L1		
		MTZ2 10 N1/H1/H2/L1	MTZ2 10 H1/H2/L1		MTZ2 10 L1	1	
		MTZ2 12 N1/H1/H2/L1	MTZ2 12 H1/H2/L1		MTZ2 12 L1		
	Masterpact NT	NT08H1	NT08H2				NT08L1
	•	NT10H1	NT10H2				NT10L1
					1	•	
		NT12H1	NT12H2				
	Masterpact NW		NT12H2	NW08H1	NW08L1		
	Masterpact NW	NT12H1	NT12H2	NW08H1 NW10H1	NW08L1 NW10L1		

,	alis busbar trunking Isc max kArms	KTA1250 42 kA	50 kA	65 kA	85 kA	100 kA	150 kA
ype of circuit reaker			NS1000N NS1250N NS1600N		00.101	100121	NS1000L
	Masterpact MTZ1	MTZ1 10 H1/H2/H3/L1	MTZ1 10 H2/H3/L1	MTZ1 10 L1			
		MTZ1 12 H1/H2/H3 MTZ1 16 H1/H2/H3	MTZ1 12 H2/H3 MTZ1 16 H2/H3	W1211021			
	Masterpact MTZ2	MTZ2 10 N1/H1/H2/L1 MTZ2 12 N1/H1/H2/L1 MTZ2 16 N1/H1/H2/L1	MTZ2 10 H1/H2/L1 MTZ2 12 H1/H2/L1 MTZ2 16 H1/H2/L1				
	Masterpact NT	NT10H1 NT12H1 NT16H1	NT10H2 NT12H2 NT16H2				NT10L1
	Masterpact NW	NW10N1 NW12N1 NW16N1	NW10H1 NW12H1 NW16H1				
Type of Cana	alis busbar trunking	KTA1250 Reinforce		 			
Type of Carl	lsc max kArms	42 kA	50 kA	65 kA	85 kA	100 kA	150 kA
ype of circuit reaker			NS1000N NS1250N NS1600N	NS1000H NS1250H NS1600H	00.101	100121	NS1000L
	Masterpact MTZ1	MTZ1 10 H1/H2/H3/L1 MTZ1 12 H1/H2/H3 MTZ1 16 H1/H2/H3	MTZ1 10 H2/H3/L1 MTZ1 12 H2/H3 MTZ1 16 H2/H3	MTZ1 10 H3/L1 MTZ1 12 H3 MTZ1 16 H3	MTZ1 10 L1		
	Masterpact MTZ2	MTZ2 10 N1/H1/H2/L1 MTZ2 12 N1/H1/H2/L1 MTZ2 16 N1/H1/H2/L1	MTZ2 10 H1/H2/L1 MTZ2 12 H1/H2/L1 MTZ2 16 H1/H2/L1		MTZ2 10 L1 MTZ2 12 L1 MTZ2 16 L1		
	Masterpact NT	NT10H1 NT12H1 NT16H1	NT10H2 NT12H2 NT16H2				NT10L1
	Masterpact NW	NW10N1 NW12N1 NW16N1		NW10H1 NW12H1 NW16H1	NW10L1 NW12L1 NW16L1		
Type of Cana	alis busbar trunking	KTA1600		Leave	lana.		
	Isc max kArms	42 kA	50 kA	65 kA	85 kA	100 kA	150 kA
Type of circuit preaker	Compact NS		NS1250N NS1600N	NS1250H NS1600H NS1600bN NS2000N			
	Masterpact MTZ1	MTZ1 12 H1/H2/H3 MTZ1 16 H1/H2/H3	MTZ1 12 H2/H3 MTZ1 16 H2/H3	MTZ1 12 H3 MTZ1 16 H3			
	Masterpact MTZ2	MTZ2 12 N1/H1/H2/L1 MTZ2 16 N1/H1/H2/L1 MTZ2 20 N1/H1/H2/H3/L1	MTZ2 12 H1/H2/L1 MTZ2 16 H1/H2/L1 MTZ2 20 H1/H2/H3/	L1	MTZ2 12 L1 MTZ2 16 L1 MTZ2 20 L1		
	Masterpact NT	NT12H1 NT16H1	NT12H2 NT16H2	NINA OLI IA		NIM/4 OL 4	
	Masterpact NW	NW12N1 NW16N1 NW20H1		NW12H1 NW16H1 NW20H1		NW12L1 NW16L1 NW20L1	
Type of Cana	alis busbar trunking	KTA1600 PER Reinf			lease.		
Type of circuit preaker	Isc max kArms Compact NS	42 kA	50 kA NS1250N	65 kA NS1250H NS1600H NS1600bN NS2000N	NS1600bH NS2000H	100 kA	150 kA
	Masterpact MTZ1	MTZ1 12 H1/H2/H3 MTZ1 16 H1/H2/H3	MTZ1 12 H2/H3 MTZ1 16 H2/H3	MTZ1 12 H3 MTZ1 16 H3			
	Masterpact MTZ2	MTZ2 12 N1/H1/H2/L1 MTZ2 16 N1/H1/H2/L1 MTZ2 20 N1/H1/H2/H3/L1	MTZ2 12 H1/H2/L1 MTZ2 16 H1/H2/L1 MTZ2 20 H1/H2/H3/	'L1	MTZ2 12 H2/L1 MTZ2 16 H2/L1 MTZ2 20 H2/H3/L1	MTZ2 12 L1 MTZ2 16 L1 MTZ2 20 L1	
	Masterpact NT	NT12H1 NT16H1	NT12H2 NT16H2				
	Masterpact NW	NW12N1 NW16N1		NW12H1 NW16H1 NW20H1	NW12H2 NW16H2 NW20H2		NW12L1 NW16L1 NW20L1
Type of Cana	alis busbar trunking	KTA2000					
ype of circuit	Isc max kArms Compact NS	42 kA	50 kA	65 kA NS1600bN NS2000N	85 kA	100 kA	150 kA
	Masterpact MTZ1	MTZ1 16 H1/H2/H3	MTZ1 16 H2/H3	MTZ1 16 H3			
	Masterpact MTZ2	MTZ2 16 N1/H1/H2/L1 MTZ2 20 N1/H1/H2/H3/L1 MTZ2 25 H1/H2/H3	MTZ2 16 H1/H2/L1 MTZ2 20 H1/H2/H3/	L1	MTZ2 16 L1 MTZ2 20 L1		
	Masterpact NT	NT16H1	NT16H2				
	Masterpact NW	NW16N1 NW20H1 NW25H1		NW16H1 NW20H1 NW25H1		NW 16 L1 NW20L1	

Selection guide

Canalis KTA

Type of Cana	alis busbar trunking Isc max kArms	KTA2000 Reinforce	snort-circuit lev	/ei 65 kA	85 kA	100 kA	150 kA
ype of circuit		42 KA	JU KA	NS1600bN NS2000N	NS1600bH NS2000H	100 KA	130 KA
	Masterpact MTZ1	MTZ1 16 H1/H2/H3	MTZ1 16 H2/H3	MTZ1 16 H3			
	Masterpact MTZ2	MTZ2 16 N1/H1/H2/L1 MTZ2 20 N1/H1/H2/H3/L1	MTZ2 16 H1/H2/L1 MTZ2 20 H1/H2/H3		MTZ2 16 H2/L1 MTZ2 20 H2/H3/L	_1	MTZ2 16 L1 MTZ2 20 L1
	Masterpact NT	MTZ2 25 H1/H2/H3 NT16H1	NT16H2	T	MTZ2 25 H2/H3	1	
	Masterpact NW	NW16N1	INT TOTIZ	NW16H1		NW16H2	NW16L1
	·	NW20H1 NW25H1		NW20H1 NW25H1		NW20H2 NW25H2	NW20L1
Type of Cana	alis busbar trunking	KTA2500					
	Isc max kArms	42 kA	50 kA	65 kA	80 kA	100 kA	150 kA
ype of circuit reaker	Masterpact MTZ2	MTZ2 20 H1/H2/H3/L1 MTZ2 25 H1/H2/H3 MTZ2 32 H1/H2/H3			MTZ2 20 H2/H3/L1 MTZ2 25 H2/H3 MTZ2 32 H2/H3	MTZ2 20 L1	MTZ2 20 L1
	Masterpact NW			NW20H1 NW25H1	NW20H2 NW25H2	NW20L1	NW20L1
Turns of Com	dia buahan tumbina	MTAGEOG Deinfenes	 	NW32H1	NW32H2		
type of Cana	alis busbar trunking Isc max kArms	KTA2500 Reinforced	50 kA	65 kA	80 kA	100 kA	110 kA
vne of circuit	Masterpact MTZ2	MTZ2 20 H1/H2/H3/L1	50 KA	UJ KA	MTZ2 20 H2/H3/L	1.0	MTZ2 20 H3/L1
preaker		MTZ2 25 H1/H2/H3 MTZ2 32 H1/H2/H3			MTZ2 25 H2/H3 MTZ2 32 H2/H3		MTZ2 25 H3 MTZ2 32 H3
	Masterpact NW			NW20H1 NW25H1 NW32H1		NW20H2 NW25H2 NW32H2	NW20L1 (150 k/ NW25H3 NW32H3
Type of Cana	alis busbar trunking	KTA3200					
J	lsc max kArms	42 kA	50 kA	65 kA	85 kA	100 kA	110 kA
Type of circuit preaker	Masterpact MTZ2	MTZ2 25 H1/H2/H3 MTZ2 32 H1/H2/H3 MTZ2 40 H1/H2/H3			MTZ2 25 H2/H3 MTZ2 32 H2/H3 MTZ2 40 H2/H3		
	Masterpact MTZ3	MTZ3 40 H1/H2					
	Masterpact NW			NW25H1 NW32H1 NW40H1	NW25H2 NW32H2 NW40H2 NW40bH1		
Type of Cana	alis busbar trunking	KTA3200 Reinforce	d short-circuit lev	/el			
•	Isc max kArms	42 kA	50 kA	65 kA	85 kA	100 kA	110 kA
ype of circuit oreaker	Masterpact MTZ2	MTZ2 25 H1/H2/H3 MTZ2 32 H1/H2/H3 MTZ2 40 H1/H2/H3			MTZ2 25 H2/H3 MTZ2 32 H2/H3 MTZ2 40 H2/H3		MTZ2 25 H3 MTZ2 32 H3 MTZ2 40 H3
	Masterpact MTZ3	MTZ3 40 H1/H2		1,0405114		1,114/05/10	MTZ3 40 H2
	Masterpact NW			NW25H1 NW32H1 NW40H1		NW25H2 NW32H2 NW40H2 NW40bH1	NW32H3 NW40H3 NW40bH2
Type of Cana	alis busbar trunking	KTA4000					
•	Isc max kArms	42 kA	50 kA	65 kA	90 kA	100 kA	110 kA
ype of circuit reaker	Masterpact MTZ2	MTZ2 32 H1/H2/H3 MTZ2 40 H1/H2/H3			MTZ2 32 H2/H3 MTZ2 40 H2/H3		
	Masterpact MTZ3	MTZ3 40 H1/H2 MTZ3 50 H1/H2					
	Masterpact NW	W1125 00 111/112		NW32H1 NW40H1 NW40bH1 NW50H1	NW32H2 NW40H2 NW40bH1 NW50H1		
Type of Cana	alis busbar trunking	KTA4000 Reinforce	d short-circuit lev		INVVOUIT		
. y po oi oune	Isc max kArms	42 kA	50 kA	65 kA	90 kA	100 kA	120 kA
Type of circuit breaker	Masterpact MTZ2	MTZ2 32 H1/H2/H3 MTZ2 40 H1/H2/H3			MTZ2 32 H2/H3 MTZ2 40 H2/H3		MTZ2 32 H3 MTZ2 40 H3
	Masterpact MTZ3	MTZ3 40 H1/H2 MTZ3 50 H1/H2					MTZ3 40 H2 MTZ3 50 H2
	Masterpact NW			NW32H1 NW40H1 NW40bH1 NW50H1		NW32H2 NW40H2 NW40bH1 NW50H1	NW32H3 NW40H3 NW40bH2 NW50H2
Type of Cana	alis busbar trunking	KTA5000 / KTA 5000		t-circuit level			
	Isc max kArms	42 kA	50 kA	65 kA	90 kA	100 kA	120 kA
Type of circuit preaker	Masterpact MTZ2		MTZ2 32 H1/H2/H3 MTZ2 40 H1/H2/H3		MTZ2 32 H2/H3 MTZ2 40 H2/H3		MTZ2 32 H3 MTZ2 40 H3
neakei	Masterpact MTZ3		MTZ3 40 H1/H2/H3 MTZ3 40 H1/H2 MTZ3 50 H1/H2)	IVI I ZZ 4U ПZ/ПЗ		MTZ3 40 H2 MTZ3 50 H2

(1) L1 up to 150 kA.

For a voltage of 660 / 690 V

	age of 660 / 690 V							
Type of Can	alis busbar trunking	KTA1000			l==		I	140010
Type of circuit	Isc max kArms	25 kA	30 kA NS800N	42 kA NS800H	50 kA	65 kA	75 kA NS800LB	100 kA
reaker	Compact No		NS1000N NS1250N	NS1000H NS1250H			NSOULD	
	Masterpact MTZ1	MTZ1 08 H1/H2/L1 MTZ1 10 H1/H2/L1 MTZ1 12 H1/H2			_			
	Masterpact MTZ2	MTZ2 08 N1/H1/H MTZ2 10 N1/H1/ H MTZ2 12 N1/H1/H	I2/L1		MTZ2 08 H1/H2/L1 MTZ2 10 H1/H2/L1 MTZ2 12 H1/H2/L1			
	Masterpact NT			NT08H1/H2 NT10H1/H2 NT12H1/H2				
	Masterpact NW			NW08N1 NW10N1 NW12N1	NW08H1 NW10H1 NW12H1			
Type of Can	alis busbar trunking	KTA1000 Reinf		rcuit level				
ype of circuit reaker	Isc max kArms Compact NS	25 kA	30 kA NS800N NS1000N	42 kA NS800H NS1000H	50 kA	65 kA	75 kA NS800LB	100 kA
	Masterpact MTZ1	MTZ1 08 H1/H2/L1 MTZ1 10H1/H2/L1 MTZ1 12 H1/H2	NS1250N MTZ1 08 H1/H2 MTZ1 10H1/H2	NS1250H				
	Masterpact MTZ2	MTZ2 8 N1/H1/H2 MTZ2 10 N1/H1/H MTZ2 12 N1/H1/H	I2/L1		MTZ2 8 H1/H2/L1 MTZ2 10 H1/H2/L1 MTZ2 12 H1/H2/L1	MTZ2 8 H/L1 MTZ2 10 L1 MTZ2 12 L1		
	Masterpact NT	W122 12 14 1/11 1/1		NT08H1/H2 NT10H1/H2 NT12H1/H2	WILE IETHINE	WIZE IZ ET		
	Masterpact NW			NW08N1 NW10N1 NW12N1		NW08H1 NW10H1 NW12H1		
Type of Can	alis busbar trunking	KTA1250						
ype of circuit reaker	Isc max kArms Compact NS	25 kA	30 kA NS1000N NS1250N NS1600N	42 kA NS1000H NS1250H NS1600H	50 kA	65 kA	75 kA	100 kA
	Masterpact MTZ1	MTZ1 08 H1/H2/L1 MTZ1 12 H1/H2	MTZ1 08 H1/H2		NS1600bN		+	
	Masterpact MTZ2	MTZ1 16 H1/H2 MTZ2 10 N1/H1/H MTZ2 12 N1/H1/H MTZ2 16 N1/H1/H	l2/L1		MTZ2 10 H1/H2/L1 MTZ2 12 H1/H2/L1 MTZ2 16 H1/H2/L1			
	Masterpact NT			NT10H1/H2 NT12H1/H2 NT16H1/H2				
	Masterpact NW			NW10N1 NW12N1 NW16N1	NW10H1 NW12H1 NW16H1			
Type of Can	alis busbar trunking	KTA1250 Reinf	orced short-ci	rcuit level	EO LA	CELA	75 64	400 54
Type of circuit oreaker	Isc max kArms Compact NS	23 KA	30 kA NS1000N NS1250N NS1600N	42 kA NS1000H NS1250H NS1600H	50 kA	65 kA	75 kA	100 kA
	Masterpact MTZ1	MTZ1 08 H1/H2/L1 MTZ1 12 H1/H2 MTZ1 16 H1/H2	MTZ1 08 H1/H2		NS1600bN 	NS1600bN		
	Masterpact MTZ2	MTZ2 10 N1/H1/H MTZ2 12 N1/H1/H MTZ2 16 N1/H1/H	I2/L1		MTZ2 10 H1/H2/L MTZ2 12 H1/H2/L MTZ2 16 H1/H2/L	1	MTZ2 10 L1 MTZ2 12 L1 MTZ2 16 L1	
	Masterpact NT			NT10H1/H2 NT12H1/H2 NT16H1/H2				
	Masterpact NW			NW10N1 NW12N1	NW10H1 NW12H1	NW10H1 NW12H1	NW10L1 NW12L1	

Selection guide

Canalis KTA

Type of Cana	alis busbar trunking		30 kA	42 kA	50 kA	65 kA	85 kA	100 kA
ype of circuit		23 KA	NS1250N	NS1250H	SU KA	00 KA	00 KA	IUU KA
ype of circuit oreaker	Compactino		NS1600N	NS1600H		I		
. ounoi			11010011	110100011	-	NS1600bN	-	
						NS2000N		
	Masterpact MTZ1	MTZ1 12 H1/H2		•				
		MTZ1 16 H1/H2						
	Masterpact MTZ2	MTZ2 12 N1/H1/I			MTZ2 12 H1/H2/L		MTZ2 12 L1	
		MTZ2 16 N1/H1/I			MTZ2 16 H1/H2/L		MTZ2 16 L1	
	Mostornost NIT	MTZ2 20 N1/H1/I	H2/H3/L1	NT12H1/H2	MTZ2 20 H1/H2/F	13/L1	MTZ2 20 L1	
	Masterpact NT			NT12H1/H2 NT16H1/H2				
	Masterpact NW		+	NW12N1		NW12H1	NW12L1 (≤ 75 kA)	
	Madiorpaditivi			NW16N1		NW16H1	NW16L1 (≤ 75 kA)	
						NW20H1	NW20 L1 (≤ 75 kA)	
Type of Cana	alis busbar trunking	KTA1600 Rein	forced short-	circuit level				
•	Isc max kArms	25 kA	30 kA	42 kA	50 kA	65 kA	85 kA	100 kA
Type of circuit	Compact NS		NS1250N	NS1250H				
oreaker			NS1600N	NS1600H				
						NS1600bN		
	M ((NAT 74	NAT74 40 114 // 10				NS2000N		
	Masterpact MTZ1	MTZ1 12 H1/H2						
	Masterpact MTZ2	MTZ1 16 H1/H2 MTZ2 12 N1/H1/I	J2/I 1		MTZ2 12 H1/H2/L	1	MTZ2 12 H2/L1	MTZ2 12 L1
	wasterpact WHZZ	MTZ2 12 N1/H1/I			MTZ2 16 H1/H2/L		MTZ2 12 H2/L1	MTZ2 12 L1
		MTZ2 20 N1/H1/I			MTZ2 20 H1/H2/F			MTZ2 20 L1
	Masterpact NT			NT12H1/H2				
				NT16H1/H2				
	Masterpact NW			NW12N1		NW12H1	NW12H2 (≤ 75 kA)	NW12L1
	·			NW16N1		NW16H1	NW16H2 (≤ 75 kA)	NW16L1
						NW20H1	NW20H2 (≤ 75 kA)	NW20L1
Type of Cana	alis busbar trunking	KTA2000						
	Isc max kArms	25 kA	30 kA	42 kA	50 kA	65 kA	85 kA	100 kA
Type of circuit	Compact NS		NS1600N	NS1600H				
breaker						NS1600bN		
						NS2000N NS2500N		
	Masterpact MTZ1	MTZ1 16 H1/H2			_	NS2300N		
	Masterpact MTZ2	MTZ2 16 N1/H1/I	H2/I 1		MTZ2 16 H1/H2/L	<u> </u> 1	MTZ2 16 L1	
	Wasterpact W1722	MTZ2 20 N1/H1/H2/H3/L1			MTZ2 20 H1/H2/F		MTZ2 20 L1	
		MTZ2 25 H1/H2/H3						
	Masterpact NT	-	Ī	NT16H1/H2				
	Masterpact NW			NW16N1		NW16H1		NW16L1
	'					NW20H1		NW20L1
						NW25H1		
Type of Cana	alis busbar trunking	KTA2000 Rein			1		1	
B	Isc max kArms	25 kA	30 kA	42 kA	50 kA	65 kA	85 kA	100 kA
Type of circuit	Compact NS		NS1600N	NS1600H	_	1101000111	_	
breaker						NS1600bN		
						NS2000N NS2500N		
	Masterpact MTZ1	MTZ1 16 H1/H2				113230011		
	Masterpact MTZ2	MTZ2 16 N1/H2/I	J2/I 1		MTZ2 16 H1/H2/L	1	MTZ2 16 L1	MTZ2 16 L1
	Masterpact MTZZ	MTZ2 20 N1/H1/I			MTZ2 20 H1/H2/F		MTZ2 20 H2/H3/L1	MTZ2 20 H3/L
		MTZ2 25 H1/H2/I				.0/21	MTZ2 25 H2/H3	MTZ2 25 H3
	Masterpact NT		Ť	NT16H1/H2				
	Masterpact NW		1	NW16N1		NW16H1	NW16H2 (≤ 75 kA)	NW16L1
	ere becesses		1			NW20H1	NW20H2 (≤ 75 kA)	NW20H3
						NW25H1	NW25H2 (≤ 75 kA)	NW25H3
Type of Cana		KTA2500						
	Isc max kArms	25 kA	30 kA	42 kA	50 kA	65 kA	80 kA	100 kA
Type of circuit	Compact NS		1			NS2000N		
oreaker			1			NS2500N		
Junci		NAT74 40 114 # 15	1		_	NS3200N		
						L		MITTO COLL
	Masterpact MTZ1	MTZ2 20 N1/H1/H2/H3/L1						IMIZ22011
	Masterpact MTZ1 Masterpact MTZ2				MTZ2 20 H1/H2/F	13/L1	MTZ2 20 H2/H3/L1	W1122 20 L1
		MTZ2 20 N1/H1/I MTZ2 25 H1/H2/I	H3		MTZ2 20 H1/H2/F	13/L1	MTZ2 25 H2/H3	W1122 20 C1
	Masterpact MTZ2	MTZ2 20 N1/H1/I	H3	NIT46U4/U2	MTZ2 20 H1/H2/F	13/L1		WITZZZOCI
	Masterpact MTZ2 Masterpact NT	MTZ2 20 N1/H1/I MTZ2 25 H1/H2/I	H3	NT16H1/H2	MTZ2 20 H1/H2/F		MTZ2 25 H2/H3 MTZ2 32 H2/H3	
	Masterpact MTZ2	MTZ2 20 N1/H1/I MTZ2 25 H1/H2/I	H3	NT16H1/H2	MTZ2 20 H1/H2/F	NW20H1 NW25H1	MTZ2 25 H2/H3	NW20L1

Type of Cana	alis busbar trunking	KTA2500 Rein	forced short-	circuit level					
	Isc max kArms		30 kA	42 kA	50 kA	65 kA	85 kA	100 kA	
Type of circuit breaker	Compact NS					NS2000N NS2500N			
	Mosternost MT71	MTZ1 16 H1/H2				NS3200N			
	Masterpact MTZ1 Masterpact MTZ2	MTZ1 16 H1/H2 MTZ2 20 N1/H1/F	12/113/1 1		MTZ2 20 H1/h	H2/H3/I 1	MT72 20 H2/H3/I 1	MTZ2 20 H3/L1	
	Waster pact W122		TTZ2 25 H1/H2/H3 MTZ2 25 H2/H TTZ2 32 H1/H2/H3 MTZ2 32 H2/H						
	Masterpact NT			NT16H1/H2					
	Masterpact NW	L/T4 0000				NW20H1 NW25H1 NW32H1	NW20H2 (≤ 80 kA) NW25H2 (≤ 80 kA) NW32H2 (≤ 80 kA)		
Type of Cana	alis busbar trunking	KTA3200	10014	401.4	501.4	lor La	0514	40014	
Type of circuit breaker	Isc max kArms Compact NS	25 KA	30 kA	42 kA	50 kA	65 kA NS2500N NS3200N	85 kA	100 kA	
2.04.10.	Masterpact MTZ2	MTZ2 32 H1/H2/F MTZ2 40 H1/H2/F			1	110020011	MTZ2 32 H2/H3 MTZ2 40 H2/H3		
	Masterpact MTZ3	MTZ3 40 H1/H2							
	Masterpact NW					NW25H1 NW32H1 NW40H1	NW25H2 NW32H2 NW40H2 NW40b H1/H2		
Type of Cana	alis busbar trunking	KTA3200 Rein							
_	Isc max kArms	25 kA	30 kA	42 kA	50 kA	65 kA	85 kA	100 kA	
Type of circuit breaker		MT70 00 114/110/1				NS2500N NS3200N	MT70 00 110/110	MT70 00 110	
	Masterpact MTZ2 Masterpact MTZ3	MTZ2 32 H1/H2/F MTZ2 40 H1/H2/F MTZ3 40 H1/H2					MTZ2 32 H2/H3 MTZ2 40 H2/H3		
	Masterpact NW	W1123 40 H1/H2	1	1		NW25H1	NW25H2	NW25H3	
	·					NW32H1 NW40H1	NW32H2 NW40H2	NW32H3 NW40H3 NW40bH1/2	
Type of Cana	alis busbar trunking	KTA4000		1.01.0				4001.0	
Tune of sinewit	Isc max kArms	25 kA	30 kA	42 kA	50 kA	65 kA	85 kA	100 kA	
Type of circuit breaker	Masterpact MTZ2	MTZ2 32 H1/H2/F MTZ2 40 H1/H2/F	MTZ2 32 H1/H2/H3 MTZ2 32 H1/H2/H3 MTZ2 37 MTZ2 40 H4/H2/H3						
	Masterpact MTZ3	MTZ3 40 H1/H2 MTZ3 50 H1/H2	MTZ3 40 H1/H2						
	Masterpact NW					NW32H1 NW40H1	NW32H2 NW40H2 NW40bH1/H2 NW50 H1/H2		
Type of Cana	alis busbar trunking	KTA4000 Rein							
_	Isc max kArms	25 kA	30 kA	42 kA	50 kA	65 kA	85 kA	100 kA	
Type of circuit breaker	Masterpact MTZ2	MTZ2 32 H1/H2/F MTZ2 40 H1/H2/F				NS3200N	MTZ2 32 H2/H3 MTZ2 40 H2/H3		
	Masterpact MTZ3	MTZ3 40 H1/H2 MTZ3 50 H1/H2 MTZ3 63 H1/H2	: -						
	Masterpact NW					NW32H1 NW40H1	NW32H2 NW40H2	NW32H3 NW40H3 NW40bH1/H2 NW50H1/H2	
Type of Cana	alis busbar trunking	KTA5000	laa.			4-17			
Type of circuit breaker	Isc max kArms Masterpact MTZ2	25 KA	30 kA	42 kA	50 kA		85 kA MTZ2 32 H2/H3 MTZ2 40 H2/H3		
	Masterpact MTZ3					MTZ3 40 H1/H2 MTZ3 50 H1/H2 MTZ3 63 H1/H2	2 2		

Degree of protection

Canalis KTA

Standard IEC 60364-5-51 categorises a large number of external influences to which electrical installations can be subjected, for instance the presence of water, solid objects, shocks, vibrations and corrosive substances.

The importance of these influences depends on the installation conditions. For example, the presence of water can vary from a few drops to total immersion.

Degree of protection IP

Standard IEC 60529 (February 2001) indicates the degree of protection provided by electrical equipment enclosures against accidental direct contact with live parts and against the ingress of solid foreign objects or water.

This standard does not apply to protection against the risk of explosion or conditions such as humidity, corrosive gases, fungi or vermin.

The IP code comprises 2 characteristic numerals and may include an additional letter when the actual protection of persons against direct contact with live parts is better than that indicated by the first numeral.

The first numeral characterises the protection of the equipment against penetration of solid objects and the protection of people.

The second numeral characterises the protection of the equipment against penetration of water with harmful effects.

Remarks concerning the degree of protection IP

The degree of protection IP must always be read and understood numeral by numeral and not as a whole.

For example, an IP31 enclosure is suitable for an environment that requires a minimum degree of protection IP21. However an IP30 wall-mount enclosure is not suitable.

The degrees of protection indicated in this catalogue are valid for the enclosures as presented. However, the indicated degree of protection is guaranteed only when the installation and device mounting are carried out in accordance with professional standard practice.

Additional letter

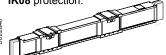
Protection of persons against direct contact with live parts.

The additional letter is used only if the actual protection of persons is higher than that indicated by the first characteristic numeral of the IP code. If only the protection of persons is of interest, the two characteristic numerals are replaced by the letter "X", e.g. IPxxB.

Degree of protection IK

Standard IEC 62-262 defines a coding system (IK code) indicating the degree of protection provided by electrical equipment enclosures against external mechanical impact.

Installation standard IEC 60-364 provides a cross-reference between the various degrees of protection and the environmental conditions classification, relating to the selection of equipment according to external factors.


IK code

The IK code comprises 2 characteristic numerals (e.g. IK05).

Practical guide UTE C 15-103 shows, in the form of tables, the characteristics required for electrical equipment (including minimum degrees of protection), according to the locations in which they are installed.

Meaning of the numerals and letters representing the degree of protection IP.

The Canalis KTA busbar trunking products are designed to provide **IP55D and IK08** protection.

1st characteristic numeral: corresponds to protection of equipment against penetration of solid objects and protection of persons against direct contact with live parts.

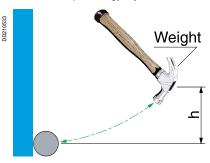
parts.	arra protocuerror percerso agai		
Protection of equipment	Protection of persons		
Non-protected.	Non-protected.	0	
Protected against the penetration of solid objects having a diameter greater than or equal to 50 mm.	Protected against direct contact with the back of the hand (accidental contact).	1	0 50 mm
Protected against the penetration of solid objects having a diameter greater than or equal to 12.5 mm.	Protected against direct finger contact.	2	Ø12,5 mm
Protected against the penetration of solid objects having a diameter greater than or equal to 2.5 mm.	Protected against direct contact with a 2.5 mm diameter tool.	3	902,5 mm
Protected against the penetration of solid objects having a diameter greater than 1 mm.	Protected against direct contact with a 1 mm diameter wire.	4	Ø1 mm
Dust protected (no harmful deposits).	Protected against direct contact with a 1 mm diameter wire.	5	DD210048
Dust tight.	Protected against direct contact with a 1 mm diameter wire.	6	DD210019

2nd characteristic numeral: corresponds to protection of equipment against penetration of water with harmful effects.

narmiul effects.			
Protection of equipment			
Non-protected.	0		
Protected against vertical dripping water (condensation).	1	DD210006	
Protected against dripping water at an angle of up to 15°.	2	DD210007	15
Protected against rain at an angle of up to 60°.	3	DD210008	
Protected against splashing water in all directions.	4	DD210009	
Protected against water jets in all directions. Test duration: 1 mn/m² casing	5	DD210010	-
Protected against powerful jets of water and waves.	6	DD210011	***************************************

Additional letter

Corresponds to protection of persons against direct contact with live parts.


Α	With the back of the hand.
В	With the finger.
С	With a 2.5 mm diameter tool
D	With a 1 mm diameter tool

Protected against the effects of temporary immersion.

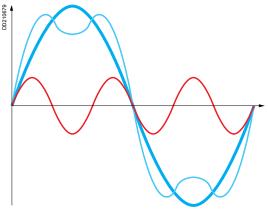
Protected against the effects of prolonged immersion under specified conditions.

Degrees of protection IK against mechanical impact

The IK code comprises 2 characteristic numerals corresponding to a value of impact energy, in joules.

	Weight (kg)	Height (cm)	Energy (J)
00	Non-protected		
01	0.20	7.50	0.15
02		10	0.20
03		17.50	0.35
04		25	0.50
05		35	0.70
06	0.50	20	1
07		40	2
08	1.70	30	5
09	5	20	10
10		40	20

Harmonic currents


Canalis KTA

Origin of harmonic currents

Harmonic currents are caused by non-linear loads connected to distribution systems, i.e. by loads that draw current with a waveform different that that of the voltage that supplies them.

The most common non-linear loads are equipment including rectifiers, fluorescent lighting and computer hardware.

In installations with a distributed neutral, non-linear loads may cause significant overloads in the neutral conductor due to the presence of third-order harmonics.

Harmonic order

The order is the ratio between the harmonic frequency fn and the fundamental frequency (generally the power frequency, 50 or 60 Hz): n = fn/f1

By definition, the fundamental f1 is order 1 (H1).

Third-order harmonics (H3) have a frequency of 150 Hz (when f1 = 50 Hz).

Estimating THD (total harmonic distortion)

The presence of third-order harmonics depends on the applications involved. It is necessary to carry out an in-depth study on each non-linear load to determine the level of H3:

ih3 (%) = 100 x i3/i1

- i3 = rms current of H3
- i1 = rms current of the fundamental

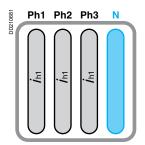
Assuming that H3 is preponderant among harmonics, the THD is close to the value of H3 (ih3(%)).

There are two decisive factors:

- the types of connected devices:
- □ disturbing loads: fluorescent lighting, computer hardware, rectifiers, arc furnaces, etc.
- $\hfill \square$ non-disturbing loads: heating, motors, pumps, etc.
- the ratio between the two types of disturbing loads.

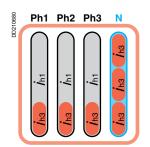
Workshops

Mix of disturbing loads (computers, UPSs, fluorescent lighting) and nondisturbing loads (motors, pumps, heating).


Low probability of harmonics **THD ≤ 15 %**.

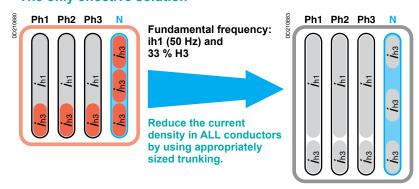
Offices

Numerous disturbing loads (computers, UPSs, fluorescent lighting).


High probability of harmonics 15 % < THD ≤ 33 %.

Effects of harmonics on Canalis busbar trunking

Fundamental frequency: ih1 (50 Hz)


No current in the neutral. The conductors are correctly sized.

Fundamental frequency: ih1 (50 Hz) and 33 % of

Abnormal temperature rise in the conductors caused by current at a higher frequency in the phases (skin effect) and current in the neutral caused by summing of the H3 harmonics.

The only effective solution

Busbar-trunking selection

THD ≤ 15 %	15 % < THD ≤ 33 %	THD > 33 %	Busbar trunking	Rating (A)
800	630	500	KTA	800
1000	800	630	KTA	1000
1250	1000	800	KTA	1250
1600	1250	1000	KTA	1600
2000	1600	1250	KTA	2000
2500	2000	1600	KTA	2500
3200	2500	2000	KTA	3200
4000	3200	2500	KTA	4000

Example. For a total rms current of 2356 A (estimation based on power drawn by loads, including harmonics), the operational current is 2500 A.
THD is estimated at 30 %. The appropriate trunking is KTA 3200 A.

For more information on harmonics

See the Cahier Technique publications on the Schneider Electric web site: www.se.com

Direct current

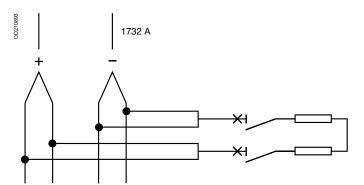
Canalis KTA

Determining the DC current value

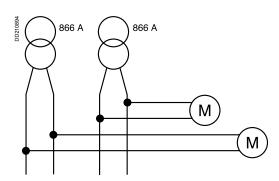
Thermal effect

Rule

The total power dissipated as heat must remain constant in the duct: Pac = Pdc


Where:

- the power dissipated as heat: **Pac** = 3 x R x lac² where:
- □ R= resistance of a conductor
- □ lac = conductor rms current
- the dissipated power for 4 conductors: **Pdc** = 4 x R x ldc² where:
- □ Idc = direct current.


Selection table

■ 1 source

Case of 2 conductors in parallel for the + and 2 conductor in parallel for the – (only 1 circuit in the busbar trunking):

■ 2 sources
Case of 1 conductor for the + and 1 conductor for the - (2 circuits possible in the same busbar trunking):

Busbar trunking rating (A)	1 source	2 sources
800	1386	693
1000	1732	866
1250	2165	1083
1600	2771	1385
2000	3464	1732
2500	4330	2165
3200	5542	2771
4000	6928	3464
5000	8660	4330

Protection

With DC, there is no zero crossing point of the voltage and current to facilitate arc extinction in the protective device.

The arcing time is longer and the energy that has to be absorbed is higher than for

The voltage of the DC arc must rise to the source voltage very quickly in order to "put out" the short-circuit current.
"Shortened" electrical equation: Unetwork = R x lsc + Uarc where:

- Isc = (Unetwork Uarc) / R
- Isc = 0 when Uarc = Unetwork.

Use with specific switchgear

A quick rise in arcing voltage can be achieved by using series fuses, one fuse on the + and one fuse on the - of each circuit.

For some current rating and fuse characteristics, the placing of two fuses in series on each polarity may be specified (highly inductive circuit).

In some cases, two fuses must be placed in parallel for each polarity.

Saline environment

For use in a saline environment, storage and installation precautions must be followed.

Please contact your sales office.

Frequencies 400 Hz

Canalis KTA

KT busbar trunking derating at 400Hz

Values at 35 °C.

Application of a derating coefficient at 400 Hz combined with that for temperature derating.

Busbar trunking derating								
	KTA08	KTA10	KTA12	KTA16	KTA20	KTA25	KTA32	KTA40
In (A)	688	851	1014	1327	1635	2024	2394	3162
Coefficient K at 400 Hz	0.86	0.85	0.84	0.83	0.82	0.81	0.80	0.79

Voltage drop

3-phase voltage drop, in millivolts per metre and per amp 400 Hz with load spread over the run.

For a concentration of load at the end of a run (transport), the voltage drops are double those shown in the table below.

Δ U evenly spread (mV. A. m)								
	KTA08	KTA10	KTA12	KTA16	KTA20	KTA25	KTA32	KTA40
Cos Φ = 1.0	0.079	0.068	0.057	0.044	0.038	0.033	0.025	0.020
Cos Φ = 0.9	0.12	0.109	0.096	0.079	0.067	0.054	0.045	0.039
Cos Φ = 0.8	0.13	0.121	0.108	0.089	0.076	0.060	0.051	0.045

Conductor characteristics

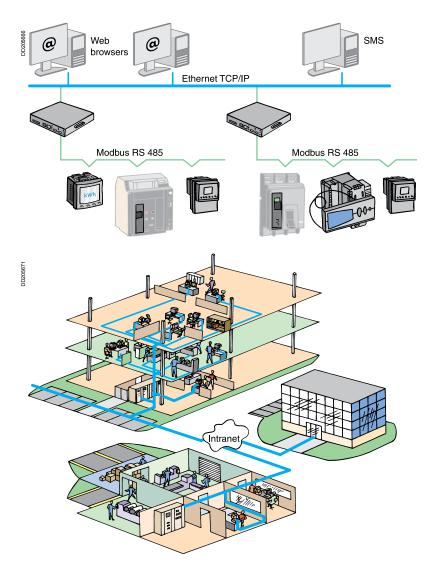
Conductor impedance								
	KTA08	KTA10	KTA12	KTA16	KTA20	KTA25	KTA32	KTA40
Average ohmic resistance of phase and neutral conductors at $\ln^{(1)}$ Rb1ph $(m\Omega/m)$	0.092	0.079	0.066	0.051	0.044	0.039	0.029	0.023
Average resistance at In and rated F(Hz) $^{(1)}$ Xph (m Ω /m)	0.14	0.128	0.120	0.104	0.088	0.064	0.059	0.056

(1) In line with the CENELEC RO.64.013 document.

Measurements and metering

Canalis part of StruxureWare

The StruxureWare platform



Canalis associated to Schneider Electric measurement and communication devices provides a simple solution to access information (status, measurements, etc.) available from your electrical distribution equipment (transformers, switchboards, busbar trunking).

This information can be accessed from any PC connected to your Ethernet network.

The supervision can make your company more competitive by:

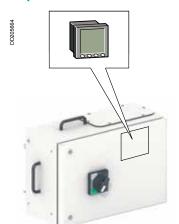
- reducing operating costs
- optimising equipment performance
- improving the reliability of the electrical power supply.

Customer needs for measurements and metering

In all non-residential buildings, the need for sub-metering exists and is growing underthe combined effects of:

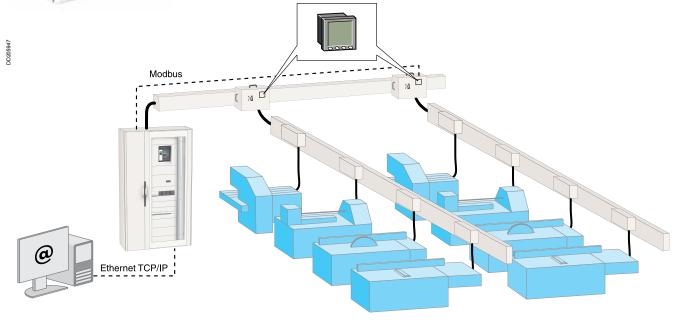
- national and supra-national energy regulations
- the need to reduce overheads and production costs
- the allocation of energy expenditures to cost centres
- the outsourcing of operations tasks to specialists.

Operators must therefore have access to reliable pre-processed information in order to:

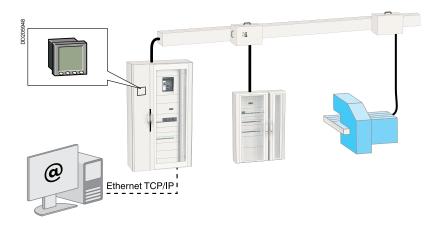

- identify areas for potential savings
- model building energy flows and anticipate evolving needs
- optimise energy supply and consumption.

Measurements and metering

Canalis part of StruxureWare


Canalis KTA

Loads monitored by a power meter in tap-off units


Canalis offers measurement and metering units that can be mounted on both Canalis KS and KT trunking ranges, available in two ratings (250 A and 400 A). They are equipped with mounting plates designed to receive a PowerLogic PM810 Power Meter, a Compact NS circuit breaker and the associated current transformers.

Data are collected by a Modbus serial communication bus and converted in Ethernet TCP/IP through an EGX gateway. Provided informations can easily be used in a supervision system.

Data acquisition in distributed architectures

When busbar trunking is located upstream of a secondary trunking line, the measurement devices should be installed in the tap-off units.

Fire resistance

Canalis KTA

As required by standards, Canalis KT busbar trunking complies with:

- 1 material resistance to abnormal temperatures,
- 2 flame propagation resistance,
- 3 fire barrier function when going through a partition wall,
 4 conservation of all circuits for 1h30 in an insulating sheath.

Definition of tests

1 - Insulating material resistance test to abnormal temperatures

Objective

To check a material will not be suspected as being the origin of a secondary fire outbreak.

As defined in standards § 8.1.3 IEC 61439-1 and IEC 60695-2-10 and 2-13.

Application of an incandescent wire for 30 seconds on the insulating materials in contact with live parts.

The specimen is considered to have passed the incandescent wire test if:

- if there is no visible flame and no sustained incandescence
- the specimen's flames and incandescence go out within 30 seconds of the incandescent wire being removed.

2 - Flame propagation resistance test

To check a busbar trunking will not create secondary fire outbreaks.

As defined in standards § 10.101 IEC 61439-6 and IEC 60332 part 3.

■ Application of a flame for 40 minutes on a straight length of busbar trunking whose centre is located 2.5 metres from the edge of the burner.

Result criteria

The specimen is considered to have passed the test if:

- combustion does not occur
- the maximum extent of the burned part (external and internal) of the busbar trunking does not go beyond 2.5 metres above the lower edge of the burner.

3 - Fire barrier test through a partition wall

Objective

To check a busbar trunking will not propagate a fire from one room to another by crossing a fire barrier wall for 60, 120, 180, or 240 minutes.

As defined in standard EN 1366-3; EN 1363-1; ISO 834; DIN 4102 part 9.

Method

The fire barrier busbar trunking section to be tested is placed in an oven which executes a standardised temperature-time curve.

Result criteria

The specimen is considered to have passed the test if:

- there are no flames behind the fire barrier
- \blacksquare there is no smoke or gas behind the fire barrier (not requested by the standard; can appear as a remark in the test report)
- the temperature rise of the casing behind the fire barrier does not exceed 180°C.

4 - Conservation of all circuits in fire conditions test

To check all the busbar trunking's electrical circuits are preserved in fire conditions.

As defined in standard DIN 4102 part 12.

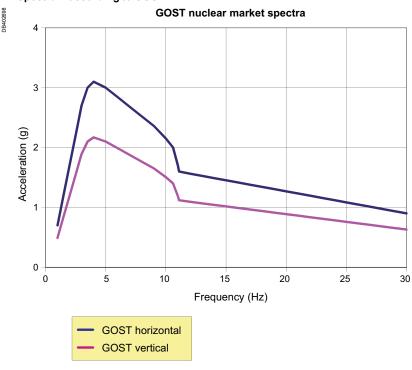
Its entire length inserted, the busbar trunking is taken as a specimen in an insulating sheath.


Result criteria

The specimen is considered to have passed the test if:

- conductor continuity is preserved
- there is no short-circuit between conductors.

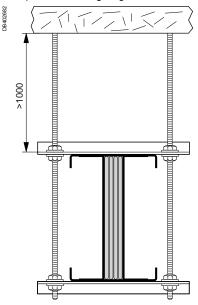
Seismic resistance


Canalis KTA

Canalis KT is seismic certified in accordance with the protocol described in IEC 60980 and a seismic level equivalent to >7 on the Richter scale and severity 9 on the international MSK- 64 scale.

The spectrum used for testing is the one specified for civil engineering and nuclear applications in GOST 17516.1-90.

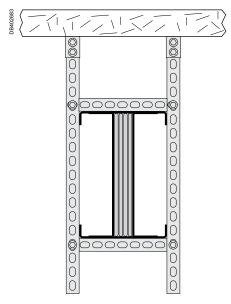
Spectrum according to GOST



Installation and support

Supports for conventional applications can be used for seismic applications by following the recommendations below:

■ For flexible support


Use supports and rods, with a minimum length of 1000 mm and additional clamping as per the following diagram.

Safety limit: 250 mm round the busbar trunking (amplitude noted during testing).

■ For rigid support

Use of conventional mechanically welded consoles with rigid busbar trunking fastening.

For both cases:

- \blacksquare its conventional fixing centre distances are maintained (3 m edgewise, 2 m flat)
- the levels achieved are applicable for horizontal, edgewise or flat or vertical installations.

Testing and commissioning procedure

Canalis KTA

All the operations described below are given for indication only. Under no circumstances can they be used to substitute the installation company's own procedures and engage Schneider Electric's responsibility.

Scope

High power busbar trunking, transformer-switchboard links.

Required tools

- Multimeter.
- 500 V megger.
- Roto-phase.

Prerequisites

- If need be, the old equipment has been removed from the premises.
- The new equipment has been manoeuvred into the premises where it is to be installed by the installation contractor.
- The equipment has been installed by the installation contractor in accordance with manufacturer's recommendations.
- The equipment's installation diagram, connection diagram and assembly results sheet are available for the commissioning engineer.

De-energising the installation and making it safe

The works manager is responsible for worksite safety and must ensure the installation is de-energised and made safe in accordance with safety rules before any inspection or measurement is performed.

Equipment checking, positioning and identification

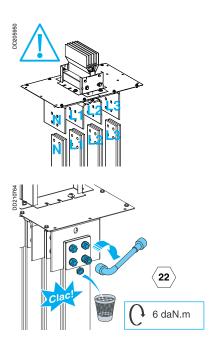
After the installation contractor has positioned, assembled and connected the busbar trunking in accordance with the supplied installation, assembly and connection diagrams, and using the recommended tools and handling equipment, the following characteristics must:

- be noted,
- be checked for compliance with respect to the details shown on the drawing.

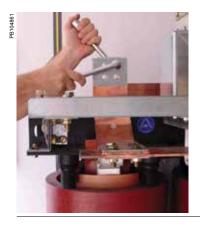
Brand	-	Busbar trunking rating:	-
Equipment type:	-	Serial number:	-
Reference:	-	Date of manufacture:	-
Transformer power:	-	Source circuit breaker (busbar trunking protection):	-

General visual inspection


The equipment has been chosen according to its electrical environment (rating and protection adapted to operating conditions).


The following points do not require checking.

Points concerning reception, storage and handling

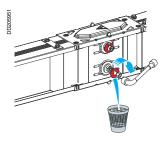

No signs of:

- shock (which may deteriorate internal insulation: conductor insulation on straight lengths or at the tap-off points or joint blocks)
- humidity or oxidation (equipment stored outside should have been covered with a plastic sheet, sheltered from humidity, dirt and dust)
- firm's label defining the product's characteristics.

Checking power connections

Points concerning installation and fittings

Assembly compliance with the specifications of the installation drawing, service instructions and the catalogue:


- no busbar trunking twisting
 positioning and distance of the busbar trunking with respect to the building
- fixings, compliance of the between centres distance of the equipment for flat or edgewise, horizontal or vertical distribution
- clamps, not fully blocked to allow movement due to longitudinal forces
- presence of expansion sections if necessary.

General visual inspection

Check the number of connection parts and their cross-sections for each conductor (see "Installation guide").

Check insulation distances between 2 conductors and between conductors and metal panels.

Check the tightening torque of bolts not fitted with torque nuts. For bolts fitted with torque nuts, check the head has broken-off.

Check the bolt length exceeding the nut; some bolts may have been removed and then put back, but left untightened.

Mark each tightened nut using indelible varnish. As well as a means of selfinspection to ensure correct tightening torque, it also allows any untightening to be identified.

Class 8-8 nuts and bolts (M8 on LV switchboard side, see "Commissioning Guide for Schneider Electric LV Switchboards").

Bolt	Tightening torque
HM16	16 daN.m
HM14	12 daN.m
HM12	7 daN.m
HM10	5 daN.m

The results of all these checks must be noted on the results sheet by the installation contractor.

Checking insulation between live conductors

These measurements and checks can only be performed if:

- each link is disconnected by an isolating device,
- each link is disconnected from the upstream transformer, with the main circuit breaker upstream of the LV switchboard unplugged and in the open position.

Test means: 500 V DC megger (DC to avoid capacitive currents)

Measurements: 6 measurements between live conductors (between phases and then between each phase and neutral).

LV circuit insulation value, according to IEC 60364-6 (and 61.3.3) standard:

- rated voltage < 500 V</p> U test DC = 500 V $Ri \ge 1 M\Omega$
- U test DC = 1000 V ■ rated voltage > 500 V $Ri \ge 1 M\Omega$.

Testing and commissioning procedure

Canalis KTA

Checking the earth network and locks

Earth network

General visual inspection

Check:

- the galvanised steel casing sides are earthed (note: this depends on the earthing system)
- connection quality
- cable cross-section
- there are no loose metal parts (washers, screws) in the tap-off units.

Note: the results of these checks must have already been noted on the results sheet by the installation contractor.

Checking insulation between live conductors and earth

Following this check, each link must be reconnected to the upstream transformer (use the 2nd available 6 daN m torque bolt heads).

Test means: 500 V DC megger (DC to avoid capacitive currents) **Measurements:** between each phase or neutral⁽¹⁾ and earth (the casing if it is connected to earth).

LV circuit insulation value, according to IEC 60364-6 (and 61.3.3) standard:

U test DC = 500 V ■ rated voltage < 500 V Ri≥1 MΩ U test DC = 1000 V ■ rated voltage > 500 V $Ri \ge 1 M\Omega$.

(1) No neutral insulation if the earthing system is such that the neutral is connected to or used

Caution: in this case, once the transformer has been reconnected (star secondary), the phaseearth measurement is the winding resistance.

Reference: IEC 61439-1:

Check PE protective circuit continuity by visual inspection and random continuity

The previously performed "phases-PE" insulation test must have been compliant. Test means: ohmmeter.

Locks

To protect personnel by not allowing access to live parts through the use of locks. Only concerns key operated safety locks.

Check not relevant to busbar trunking.

De-energised equipment operating tests

Checking source circuit breaker protection settings

Compliance check in accordance with the installation drawing specifications:

- Imax thermal
- In magnetic.

Note: this check is only to be performed if the busbar trunking is commissioned at the same time as the transformer: the source circuit breaker protection setting checks are related to transformer commissioning.

Check not relevant if the transformer has already been commissioned.

If this check is successful, the busbar trunking can be commissioned and the energised operating tests performed with the appropriate protective equipment

Commissioning and energised equipment operating tests

NOTE: commissioning can only be carried out by personnel with appropriate authorisations.

Preliminary operation: energising the off-load transformer. Closing the source circuit breaker.

Checking phase order

Objective: to detect, in order to correct, an inversion of the phases or neutral amongst the busbar trunking's 4 incoming and outgoing connections with respect to the transformer output.

Test means: roto-phase or 3-phase harmonic analyser.

If busbar trunking energising is successful, a progressive start-up of the factory must be requested to definitively validate commissioning.

If unsuccessful, the previous checks must be carried out again to try and locate the fault. Before undertaking this, the equipment must once again be made safe.

Final putting into service test

This test is performed once the busbar trunking has been energised. The progressive start-up of loads will highlight any undesirable phenomena due to the increased average load.

Real life operating test

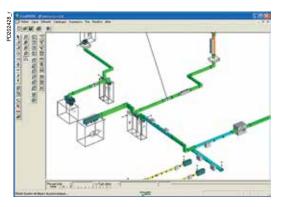
Once the high power busbar trunking has been energised, the other busbar trunking must be gradually put into service starting with those furthest from the load, then each load itself, those with high pull-in currents, then the lighting, contactors, heating, motors, etc.

There must not be excessive vibration, and no sparkovers should be observed.

The test simply consists of checking correct busbar trunking operation according to:

- the average number of machines in operation
- the load variation of each individual load
- the simultaneous operation of machines (superimposing of peaks).

If everything is in order, the busbar trunking is declared "in-service". Testing is completed.


Installation guide

Introduction Presentation and description Catalogue numbers and dimensions Design guide	23 49 151
Layout advice Run optimisation Positioning and supports Anticipate unexpected worksite problems Tips for determining dimensions at the worksite	196 196 199 202 203
Horizontal distribution Positioning the tap-off units Tap-off units Checking and compensating for expansion	206 206 207 208
Rising mains General Positioning the busbar trunking without external fire barrier Positioning the tap-off units Positioning of supports Positioning the external fire barriers Installation with feed via a cable box or direct onto the switchboard	212 213 214 214 215 216 217
Panorama of connection solutions	220
Connection to LV switchboards Selection guide By Canalis interface By universal feed unit By feed and connection plates	222 222 224 230 232
Connection to cast resin transformers Selection guide	236 236
Connection to Trihal Dry type transformers Selection guide	238 238
Connection to Trihal cast resin transformers By Canalis interface	23 9
Connection to cast resin transformers By universal feed and connection plates	242 242
Connection to Minera immersed transformers Horizontal selection guide Vertical selection guide	248 248 250
Connection to oil immersed transformers By feed and connection plates or braids	252 252
Recommendations Index	255 260

Layout advice Run optimisation

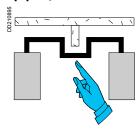
Canalis KTA

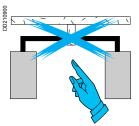
PowerSet Canalis Design software

Advice

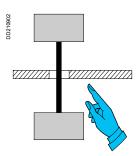
PowerSet Canalis Design software can be used to design the busbar

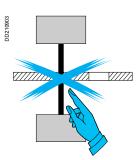
The easy-to-use program creates a graphic model of the line, determines the length and draws up the list of Canalis KT parts to order.

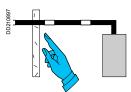

The Canalis KT line is easy to specify simply by indicating the required dimensions. However, it is strongly advised to use the shortest and simplest path possible between the transformer and the switchboard.

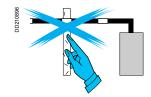

It is important to carefully plan the layout of the transformer and switchboard in order to use:

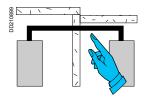
- the maximum number of standard components rather than made-to-measure components
- the minimum number of components for changing direction
- straight made-to-measure components rather than made-to-measure components for changing direction.

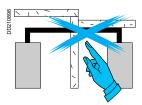

Before defining your busbar trunking run, it is recommended you pay particular attention to the various parameters which could be detrimental to the installation.

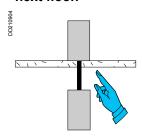

Obstacles that obstruct the busbar trunking such as beams, pipes, etc.

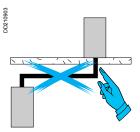


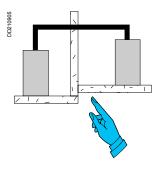

Badly positioned places for going through walls and floors.


Joint positions in the middle of a partition wall.




Insufficient ceiling height.If the busbar trunking must be installed edgewise between a transformer and switchboard, ensure the ceiling height is sufficient for fitting the joint blocks from the top.

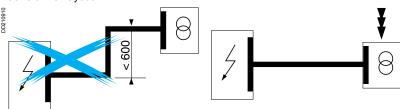

Reserve a space between the busbar trunking and the ceiling equal to 100 mm (variable depending on the rating, see "Catalogue numbers and dimensions").



Going through a floor to bottom feed a switchboard on the next floor.

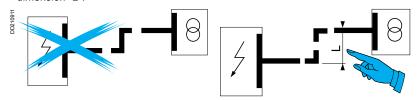
Difference in floor levels of 2 rooms.

Also make sure that as the work progresses other tradesmen do not carry out installations that could hinder your initial layout.

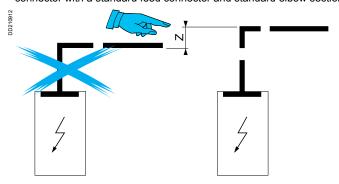

Layout advice Run optimisation

Canalis KTA

Examples of link optimisation

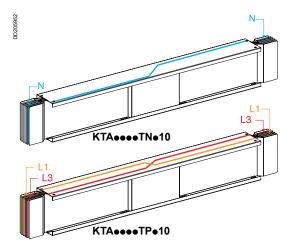

Example 1

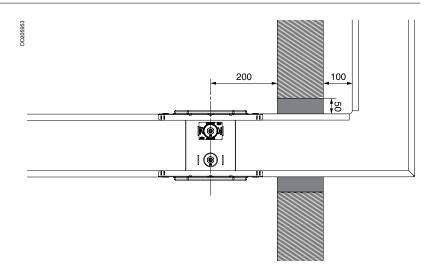
Reducing the number of changes of direction by modifying the switchboard or transformer layout.


Example 2

Use of 2 standard elbows in place of a made to measure zed by increasing dimension "L".

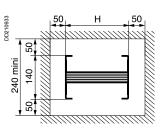
Modification of the busbar trunking height


By slightly increasing dimension "Z", replace a made to measure elbow feed connector with a standard feed connector and standard elbow section.

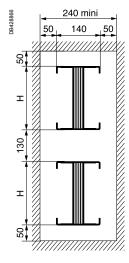

Neutral position

When choosing the layout of the electrical installation, it is important care is taken when positioning the neutral between the transformer and the switchboard. If the neutral position is different to that planned, it is recommended the transformer is moved, if possible, to align the neutral with respect to the switchboard's neutral. When it is not possible to move the transformer, it is recommended the phase order in the switchboard is inversed.

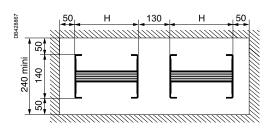
If this cannot be done, use the phase and neutral transposition section.


Positioning and supports

Edgewise passage through partition wall


240 mini 50 140 50

Flat passage through partition wall



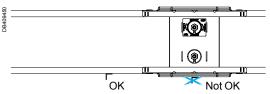
Rating (A)	800	1000	1250	1600	2000	2500	3200	4000	5000
Height H (mm)	74	104	124	164	204	244	324	404	2 x 244 + 130

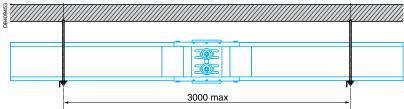
Edgewise passage through partition wall for 5000

Flat passage through partition wall for 5000

Layout advice

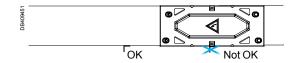
Positioning and supports

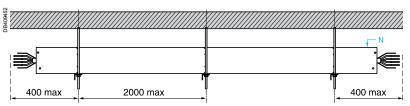

Canalis KTA


A support point as close as possible to the connections is needed because transformers, generator sets and switchboards must not support the weight of the

In some industries, for service continuity reasons, transformers may be replaced quickly. The busbar trunking must be able to support itself.

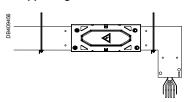
Edgewise horizontal installation


The maximum recommended distance between supports is 3 metres. In all cases, provide for 2 supports for 4 metre sections. For clamping busbar trunking to support brackets, see page 210.

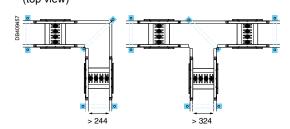


Flat horizontal installation


The recommended distance between supports is 2 metres. In addition, a support must be placed at 400 mm maximum from the joint block axis. For clamping busbar trunking to support brackets, see page 210.


Example of spreading out supports

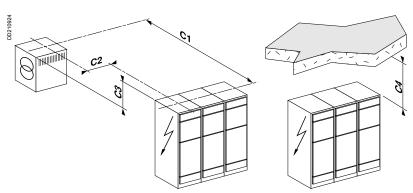
Supporting of LC elbow with a vertical branch



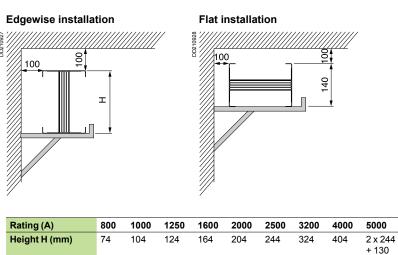
DB409454

Supporting of LP elbow with a vertical branch

Supporting of LC elbows and TC tees (top view)

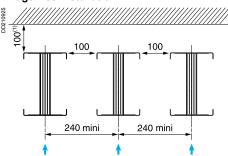


Rules to follow

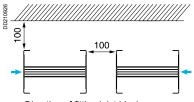

- An element must never be left unsupported.
- For easier leveling, always use two supports for each element wherever possible.
- A bracket must never coincide with a junction block.
- The capacity of fixing brackets in terms of supporting is at least the weight of the busbar trunking system plus 90 kg, in accordance with IEC 61439-6.
- Terminals must be fixed by its own brackets not be supported by transformers or
- Vertical branches must be always supported the closer as possible to the elbow
- Elbows and zeds must be supported individually.
- Supports must be installed close to junctions.

Defining the layout, dimensions to be provided

The position of the joint block with respect to the transformer axes and switchboard edges (defined in the "Installation guide").



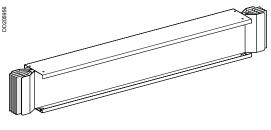
Distance of the busbar trunking from the wall


Distance between busbar trunking (without tap-off units)

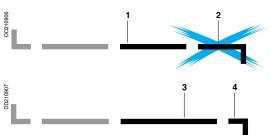
Edgewise installation

- (1) Provide 2 times the height if the joint block must be fitted from the top.
- Direction of fitting joint blocks.

Flat installation

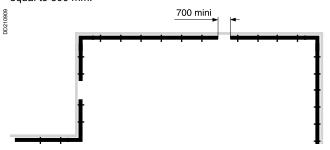

Direction of fitting joint blocks.

Layout advice

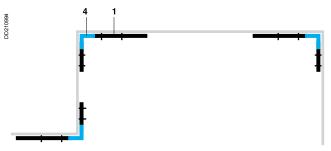

Anticipate unexpected worksite problems

Canalis KTA

Undecided section



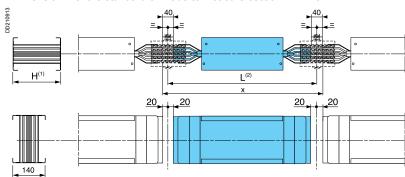
This section will be ordered after the gap to be filled has been measured at the end of the job. To optimise its delivery to site, prefer a straight section with a length of less than 2 metres rather than made to measure elbows.


- 1: Standard straight section.
- 2: Made to measure elbow.
- **3**: Made to measure straight section.
- 4: Standard elbow.

On the drawing, provide a minimum dimension of 700 mm to guarantee an adjustment of ± 200 mm on-site. The minimum length of straight sections being equal to 500 mm.

Layout recommendations for adjustable or undecided sections

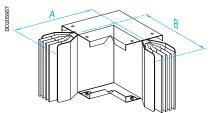
In order to provide for the place needed for undecided section, install the elbows and the sections attached to the elbows in each angle (support each assembly using 2 supports on each straight section).


And then complete the layout with standard and made to measure straight sections.

Tips for determining dimensions at the worksite

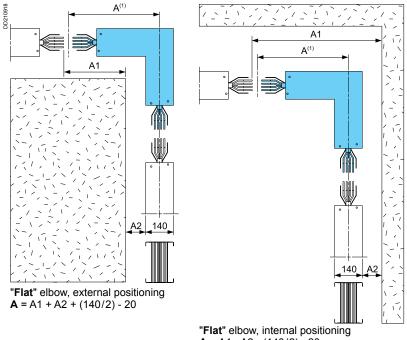
Straight section

The nominal length "L" of a straight section is measured from the axis of the joint block to the other axis of the joint block, in millimetres (the joint block axis is located 20 mm from the end of the bars).


Dimension **L** of the standard or made to measure section = \mathbf{x} - 40 mm.

- (1) For the different busbar trunking heights, see page 201.
- (2) See "Run sections" in "Catalogue numbers and Dimensions".
- x : measured dimension.

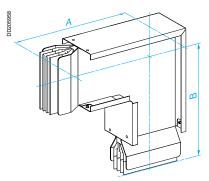
Example: x = 1860 mm hence L = 1860 - 40 = 1820 mm.


Change-of-directions

A and B: see "Changes of direction" in "Catalogue numbers and Dimensions".

Flat elbows

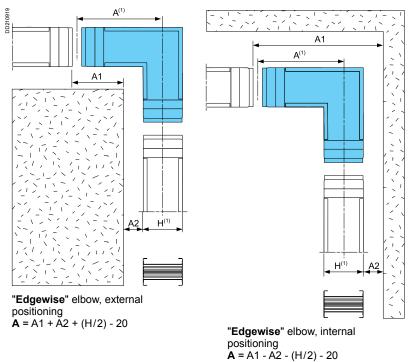
The nominal length of each branch is measured from the axis of the joint block to the axis of the other branch, in millimetres. The joint block axis is located 20 mm from the end of the bars.

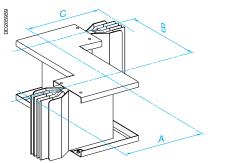

A = A1 - A2 - (140/2) - 20

(1) See "Changes of direction" in "Catalogue numbers and Dimensions".

Layout advice

Tips for determining dimensions at the worksite

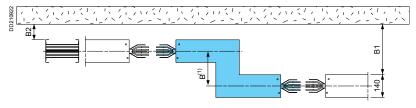

Canalis KTA


A and B: see "Changes of direction" in "Catalogue numbers and Dimensions"

Edgewise elbows

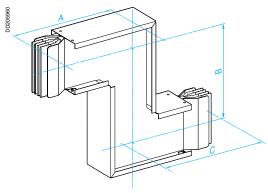
The nominal length of each branch is measured from the axis of the joint block to the axis of the other branch, in millimetres. The joint block axis is located 20 mm from the end of the bars.

(1) See "Changes of direction" in "Catalogue numbers and Dimensions".



A, B and C: see "Changes of direction" in "Catalogue numbers and Dimensions".

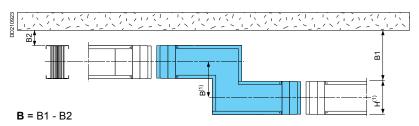
Flat Zed


The nominal length of each branch is measured from the axis of the joint block to the axis of the other branch, in millimetres. The joint block axis is located 20 mm from the end of the bars.

The nominal length of the intermediary branch(es) is measured from the axis of one branch to the axis of another.

B = B1 - B2

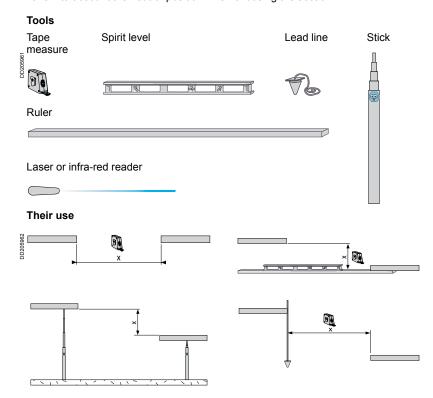
(1) See "Changes of direction" in "Catalogue numbers and Dimensions".



 ${\bf A}, {\bf B}$ and ${\bf C}$: see "Changes of direction" in "Catalogue numbers and Dimensions".

Edgewise Zed

The nominal length of each branch is measured from the axis of the joint block to the axis of the other branch, in millimetres. The joint block axis is located 20 mm from the end of the bars.


The nominal length of the intermediary branch(es) is measured from the axis of one branch to the axis of another.

(1) See "Changes of direction" in "Catalogue numbers and Dimensions".

Definition of final section parameters

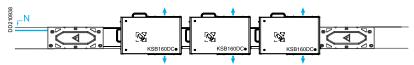
Reminder: the final section should preferably be a straight section. Take into account the neutral position when choosing the section.

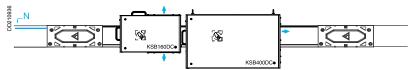
Horizontal distribution

Positioning the tap-off units

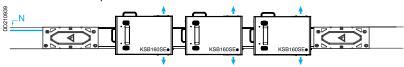
Canalis KTA

It is possible to combine the following in the same installation:

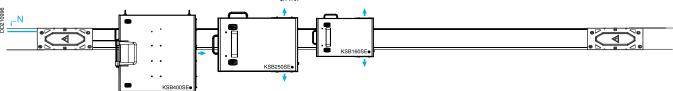

- straight transport sections with straight sections containing fixed or plug-on tap-
- straight sections of different lengths
- straight sections with different numbers of fixed or plug-on tap-off points


Positioning the tap-off units on the busbar trunking

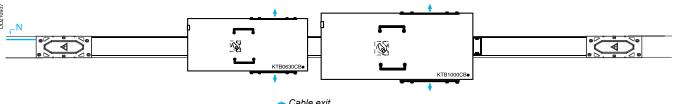
Several configurations are possible. Some examples:


■ on a 2000 mm straight section with plug-on tap-off points (KTA••••ED•20): ☐ 3 x 160 A circuit breaker tap-off units:


□ 1 x 400 A circuit breaker tap-off unit and 1 x 160 A circuit breaker tap-off unit,

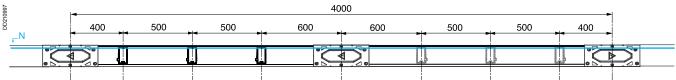

□ 3 x 160 A fuse tap-off units:

- on a 4000 mm straight section with plug-on tap-off points (KTA••••ED•40):
- □ 1 x 400 A circuit breaker tap-off unit, 1 x 250 A circuit breaker tap-off unit and 1 x 160 A circuit breaker tap-off unit:

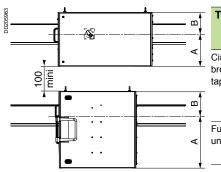


 \square 1 x 400 A fuse tap-off unit, 1 x 250 A fuse tap-off unit and 1 x160 A fuse tap-off unit:

■ on a 4000 mm straight section with fixed tap-off points (KTA••••EB•40):

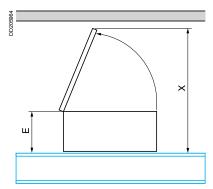

□ 1 x 400 to 630 A fixed tap-off unit and 1 x 800 to 1000 A fixed tap-off unit:

Cable exit.


Tap-off units

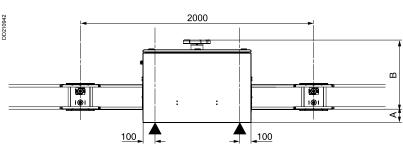
When the tap-off units have to be distributed along the length of the busbar trunking, use 2 metre sections and alternate the tap-off point positions.

Recommendations for installing 2 parallel busbar trunking runs


For an installation with tap-off units, provide for a between centres distance that takes into account the minimum dimension of 100 mm and the dimensions A and B of the tap-off units.

,	Туре	Cat. no.	Dime (mm)	nsions
			Α	В
	Circuit	KSB160DC●	160	150
_	breaker	KSB250DC●	240	160
	tap-off units	KSB400DC●	240	160
		KTB0630CB●	175	175
_		KTB1000CB●	275	275
	Fuse tap-off	KSB160SE●	150	150
	units	KSB250SE●	250	160
		KSB400SE●	440	160

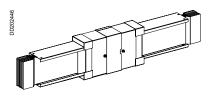
Tap-off unit door opening


Provide for a minimum distance of 1000 mm between the busbar trunking and the ceiling to allow for the opening of tap-off unit doors.

Туре	Cat. no.	Dimensions (mm)	
		Х	E ⁽¹⁾
Circuit	KSB160DC●	625.5	246
breaker	KSB250DC●	726.5	300
tap-off units	KSB400DC●	976,5	350
Fuse tap-off units	KSB160SE●	577,5	207
	KSB250SE●	777	258
	KSB400SE●	855	316

(1) With the handle.

Installing an isolator or run protective device



Rating (A)	Dimension	ons (mm)	
	Α	В	
1000	159	529	
1250	149	539	
1600	129	559	
2000	109	579	
2500	89	599	
3200	98	662	

Horizontal distribution

Checking and compensating for expansion

Canalis KTA

Long part runs

Expansion poses a problem when:

- the runs are made up of long straight sections
- when the busbar trunking passes through an expansion joint between two buildings.

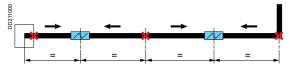
Electrical busbar trunking can be subjected to a multitude of load variations during its service life (e.g. day/night, summer/winter) which cause temperature rise differences and thus variable expansions.

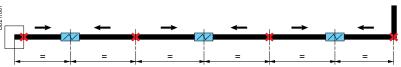
To absorb expansion in a Canalis KT busbar trunking, a specific section must be used: the expansion section.

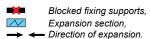
Horizontal runs without tap-off units


If the busbar trunking length is greater than 30 metres, provide for expansion sections and appropriate blocking means. The ends and, in some cases, the centre of part runs must be blocked in order to direct the extensions towards the expansion sections.

Layout of expansion sections and blocking means for the following busbar trunking lengths:

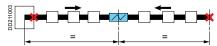

■ 0 to 30 metres:

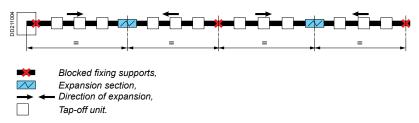

■ 31 to 60 metres:

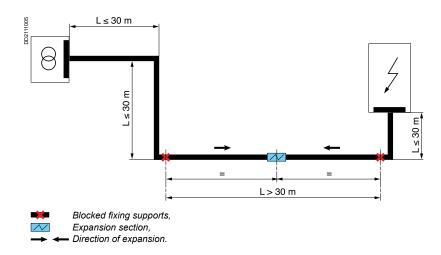


■ 61 to 90 metres:

91 to 120 metres:




Horizontal runs with tap-off units
Layout of expansion sections and blocking means for the following busbar trunking lengths:
■ 0 to 30 metres:

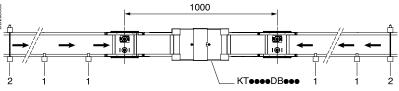

■ 31 to 60 metres:

■ 61 to 120 metres:

Transformer/switchboard links

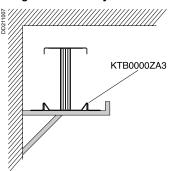
Horizontal distribution

Checking and compensating for expansion

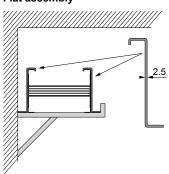

Canalis KTA

Rules for fixing busbar trunking to the supports

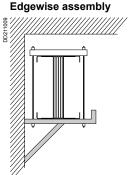
For correct system operation, the expansion of the part run in question must be directed towards the expansion section.

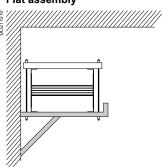

This implies:

- the busbar trunking must be free from all longitudinal movement on its supports
- the expansion section must be blocked on the opposite side to that by which it is pushed.

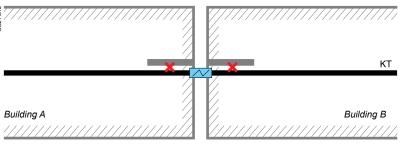


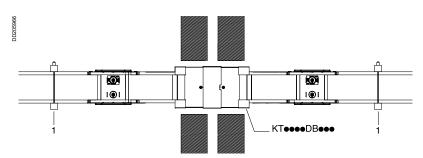
- Free fixings. Blocked fixings.
- ➤ Direction of expansion.


Installation of free fixings **Edgewise assembly**


Flat assembly

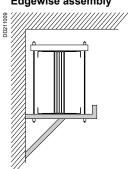
Installation of blocked fixings


Flat assembly

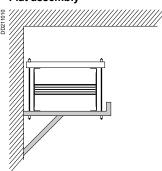

Schneider Belectric

Passing through a joint between 2 buildings

Here, the expansion section allows the busbar trunking to absorb the forces due to the relative movement between the 2 buildings.

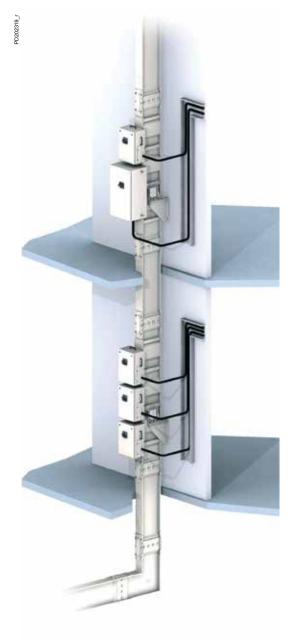


X Blocked fixing supports.



1 Blocked fixings.

Installation of blocked fixings Edgewise assembly


Flat assembly

Rising mains

General

Canalis KTA

Canalis KT enables power distribution to each floor of multi-storey buildings (office buildings, hotels, hospitals, etc).

In this application, Canalis KT retains all its construction principles:

Vertically mounted, the protection degree of the KT busbar trunking is IP55 as standard.

Installing a rising main

1 Installation principle

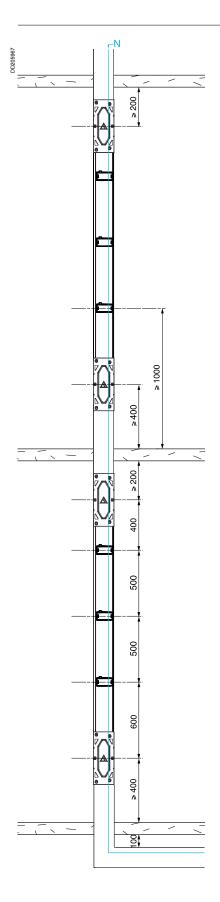
Installation at each floor of:

- a 2 metre distribution section
- a made to measure transport section to go through the floor slab
- a busbar trunking support
- up to 3 x 160 A tap-off units or a 250 or 400 A tap-off unit and a 160 A tap-off unit.

2 Installation feed

The installation feed is achieved using either a cable box or by direct connection to an electrical distribution switchboard.

3 Busbar trunking supports


The supports fix the vertical run section to the building structure. a floor slab support. It can be fixed to either the wall, to a wall bracket or directly to the floor, This type of fixing support has the following advantages:

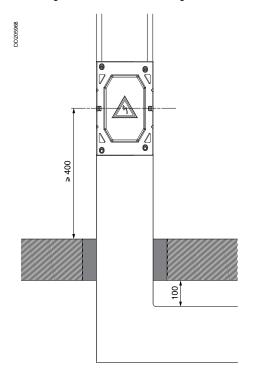
- fitting to either the wall, to a wall bracket or directly to the floor
- height adjustment to make up for positioning errors
- depth adjustment from 50 to100 mm
- spring adjustment to ensure distribution of the load at each floor
- absorption of building stresses with respect to the busbar trunking (expansion, vibration, etc) thanks to the springs.

4 Tap-off units

All Canalis KS tap-off units can be mounted vertically on the Canalis KT without the risk of interference with the supports.

Positioning the busbar trunking without external fire barrier

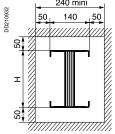
Positioning the neutral

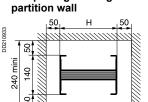

The busbar trunking must be positioned with the neutral on the right.

Positioning the joint block

It is important the joint block is not positioned in the floor slab.

We recommend you provide for a distance of:

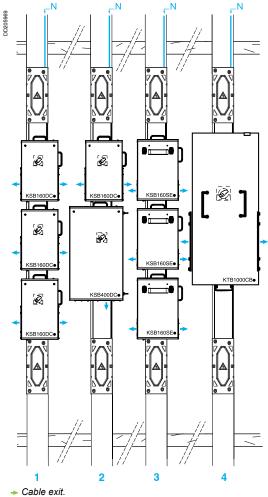

- 400 mm between the floor slab and the joint block axis to be able to install a support to the wall or wall bracket to facilitate the re-filling of the hole and to cope with possible building faults (e.g. screed not indicated on the drawings). Provide 500 mm for a floor fixing
- 200 mm between the upper joint block and the ceiling to allow the busbar trunking to be boxed-in when filling-in the hole with plaster or concrete.



Positioning the tap-offs

The run sections are fitted with 3 tap-off points. Spaced at 500 mm intervals, they provide a high density of tap-offs per floor.

Edgewise passage through partition wall


Flat passage through

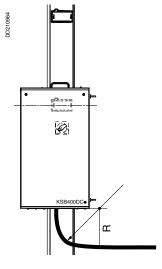
Rating (A)	800	1000	1250	1600	2000	2500	3200	4000
Height H (mm)	74	104	124	164	204	244	324	404

Rising mains

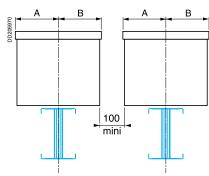
Positioning the tap-off units

Canalis KTA

Positioning the tap-off units on the busbar trunking

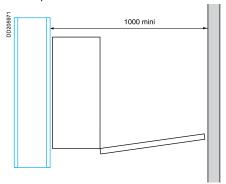

Several configurations are possible.

Some examples:

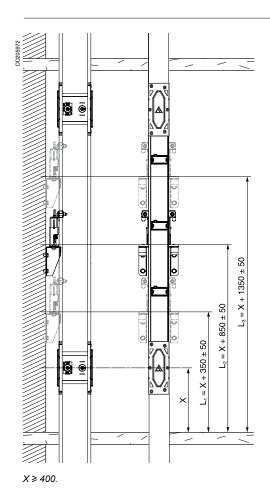

- 1 3 x 160 A circuit breaker tap-off units
- 2 1 x 400 A circuit breaker tap-off unit and 1 x 160 A circuit breaker tap-off unit
 - 3 3 x 160 A fuse tap-off units
- 4 1 x 800 to 1000 A bolted tap-off unit

Cable exit

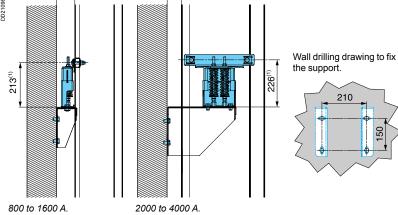
 $R = 12 \times \emptyset$ of cable


Recommendations for installing 2 rising mains in parallel For an installation with tap-off units, provide for a between centres distance that takes into account the minimum dimension of 100 mm and the dimensions A and B of the tap-off units.

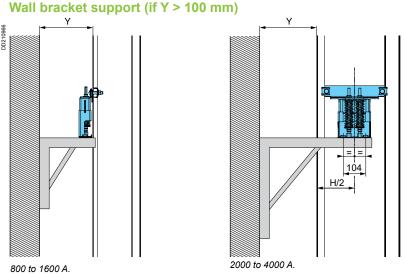
	Туре	Cat. no	Dimensions (mm)		
,			Α	В	
bre	Circuit	KSB160DC●	160	150	
	breaker	KSB250DC∙	240	160	
	tap-off units	KSB400DC●	240	160	
		KTB0630CB●	175	175	
		KTB1000CB●	275	275	
		KTB0630DC●	275	275	
	Fuse tap-off	KSB160SE●	150	150	
	units	KSB250SE●	250	160	
		KSB400SE●	440	160	
		KTB0630SD●	275	275	


Tap-off unit door opening

If installed in a technical room, provide for a minimum distance of 1000 mm between the busbar trunking and the wall in order to be able to open the doors of the tap-off units.

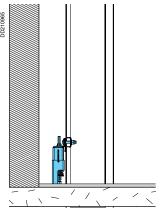

214

Positioning of supports

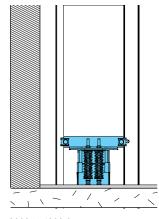


- 2 fixing systems are available:
 a rear wall fixing system for 800 A to 1600 A busbar trunking
 a side wall fixing system for 2000 A to 4000 A busbar trunking.

Wall support



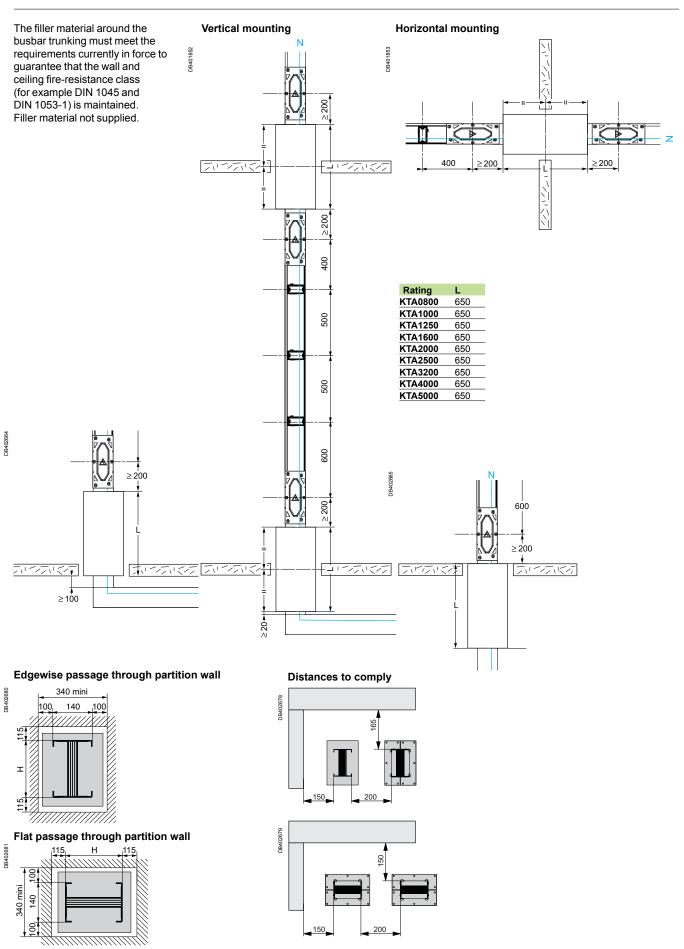
- (1) Dimensions with free springs.
 Y:50 mm minimum to 100 mm maximum



Rating (A)	2500	3200	4000	5000	
Height H (mm)	204	244	324	404	

Floor support

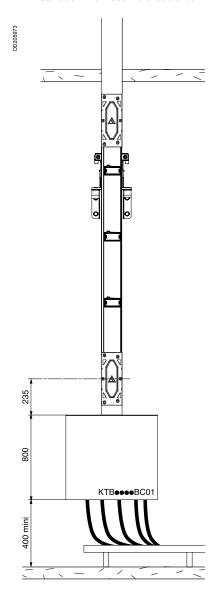
800 to 1600 A.



2000 to 4000 A.

Rising mains

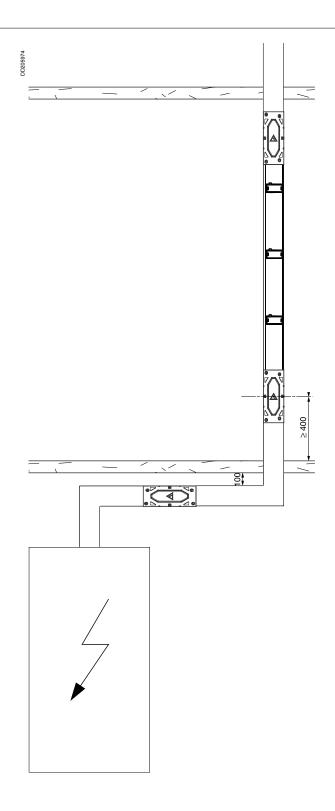
Positioning the external fire barriers


Canalis KTA

Installation with feed via a cable box or direct onto the switchboard

- 2 possibilities:
 installation with feed direct to the switchboard
- installation with feed via a cable box.

Installation with feed via a cable box.



Rising mains

Installation with feed via a cable box or direct onto the switchboard

Canalis KTA

Installation with feed direct to the switchboard

Panorama of connection solutions

Canalis KTA

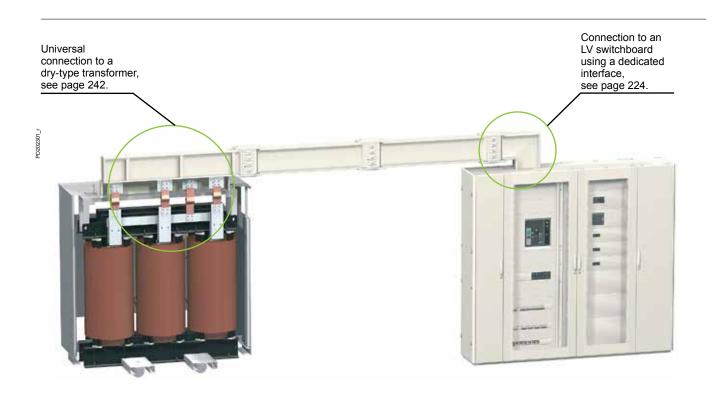
The Schneider Electric system

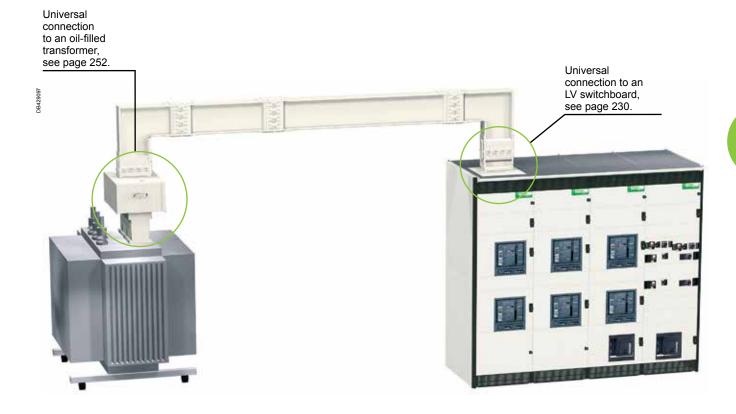
The comprehensive Schneider Electric system makes it simple to design a complete transformer/Canalis KT/switchboard installation. Using dedicated interfaces, the trunking connects directly to the dry-type transformer and the switchboard for:

- tested and standardised connections
- fast and flexible installation
- shorter lead times.

Advantages

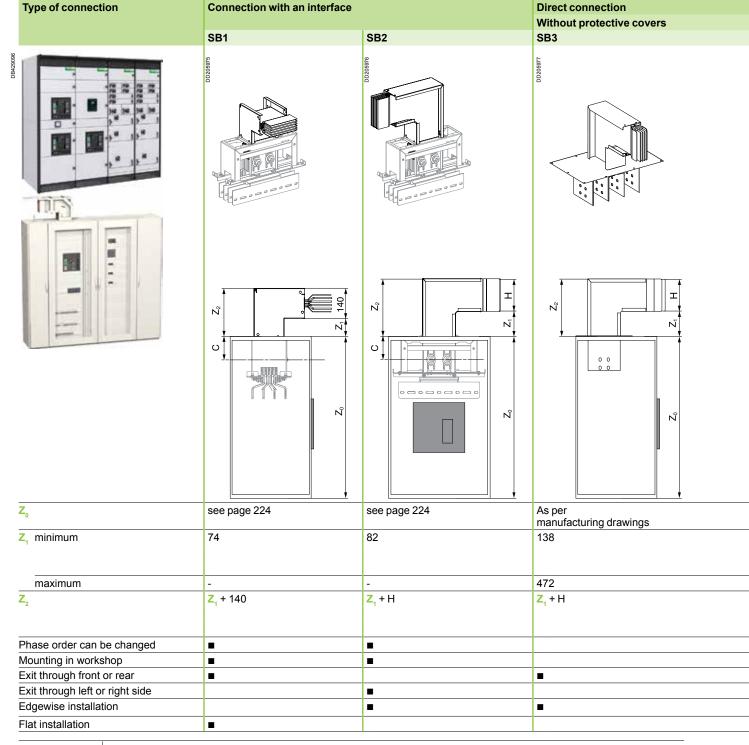
- No design work for the connections.
- Simplified layout design:
- □ pre-defined position of the jointing unit
- □ simplified routing (only three dimensions required)
 □ smaller size (no additional covers required).
- Transformer and switchboard supplied with connections already mounted.
- Short lead times and fewer catalogue numbers for connections.
- Adaptable on the worksite:
- □ transformer end: ±15 mm adjustments along all three axes
- $\hfill \square$ switchboard end: phases can be inverted.
- Continuity of service:
- □ transformer can be replaced in less than one hour
- □ transformer, trunking and switchboard designed to be used together.
- Safety:
- $\hfill\Box$ trunking fully tested in compliance with IEC 61439-1 and 61439-6
- □ compliance with standards and installation rules
- □ excellent fire-withstand capability.
- Comfort:
- □ low level of electromagnetic radiation
- □ no noise.

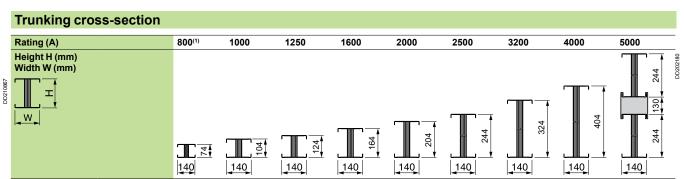

Compatibility between Trihal transformers/Canalis KT/Prisma P or Okken switchboards


Trihal trans	sformers				Prisma P or Okken switchboards							
Rating Naturally Forced ventilated (AF)		NS/NT/N	NS/NT/NW circuit breakers NS/NW circuit breake					ers	NW circuit breakers			
					800 A	1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A
		transformers, 25% overload	Interfaces		08/16				20/25		32	40
	le max.	accepted le max.		Junctions	H164				H244		H404	H404
630 kVA	887 A	1109 A	n°1	H124	KTA1000, KTA1250	KTA1000, KTA1250	KTA1000, KTA1250	KTA1000, KTA1250	-	-	-	-
800 kVA	1126 A	1408 A	n°2	H164	KTA1250, KTA1600	KTA1250, KTA1600	KTA1250, KTA1600	KTA1250, KTA1600	KTA1600	KTA1600	-	-
1000 kVA	1408 A	1760 A	n°3	H204	KTA1600	KTA1600	KTA1600	KTA1600	KTA1600, KTA2000	KTA1600, KTA2000	-	-
1250 kVA	1760 A	2200 A	n°4	H244	-	-	-	-	KTA2000, KTA2500	KTA2000, KTA2500	-	-
1600 kVA	2253 A	2816 A	n°5	H324					KTA2500	KTA2500	KTA3200	KTA3200
2000 kVA	2813 A	3516 A	n°6	H404	-	-	-	-	-	-	KTA3200, KTA4000	KTA3200, KTA4000
2500 kVA	3520 A	4400 A	n°7	H404	-	-	-	-	-	-	KTA4000	KTA4000

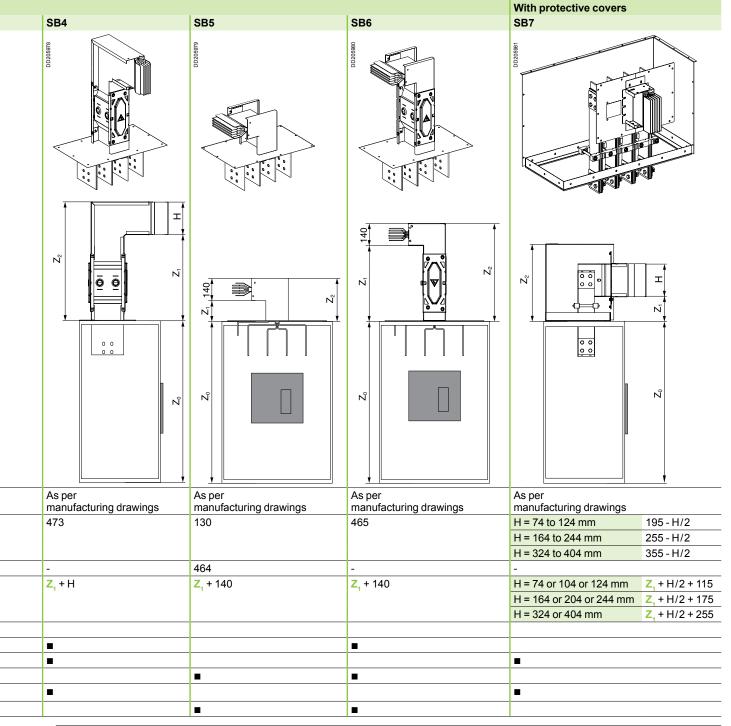
(1) The compatibilities indicated correspond to the electrical connection possibilities; in all cases, coordination between circuit breaker and electrical busbar trunking must be checked.

220




Connection to LV switchboardsSelection guide

Canalis KTA


This guide may be used to:

- select the connection best suited to your installation (incoming direction, trunking installed flat or edgewise, different phase order)
- check the total height of the connection with respect to the ceiling, i.e. dimension Z0 + Z2 (100 mm minimum clearance required between top of connection and ceiling)
- \blacksquare optimise the connection by ensuring that $(Z0 + Z1)_{\text{switchboard}} = (Z0 + Z1)_{\text{transformer}}$ to avoid having to use elbows and zed units
- position the fixing devices used to support the trunking.

(1) Important: for the 800 A rating, indicate "KTA0800".

Connection to LV switchboardsBy Canalis interface

Canalis KTA

Switchboards can be equipped with connections for Canalis KT. Jointing with the switchboard is via a standard run component (straight length, elbow, etc.) and a jointing unit (identical to those used between line components). The trunking enters the switchboard via the top (roof).

Switchboard connections are available from 800 to 4000 A.

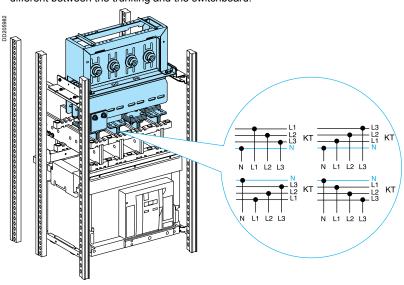
Type of switchboard	Rating of trunking (A)	Type of circuit breaker	Type of connection
Prisma P	800 to 1600	Compact NS	Top direct and rear
		Masterpact NT	Top direct and rear
	800 to 3200	Masterpact NW	Top direct and rear
	4000	Masterpact NW	Rear
Okken	800 to 4000	Masterpact NW	Top direct and rear

Connections are tested and qualified under normal operating conditions in terms of temperature rise ($\Delta\theta$) and short-circuit currents (Isc).

The panel builder receives and connects the Canalis KT interface in the workshop. The phase order at the interface output can be adapted if necessary (this information must be forwarded to the panel builder).

The switchboard is then delivered to the site and the trunking can be rapidly connected using a simple jointing unit with torque nuts to ensure the correct tightening torque.

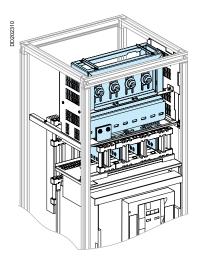
Compatibility between Canalis KT and the interface in the switchboard(1)(2)


	<u> </u>									
Canalis K	Canalis KT		Circuit breakers in Okken and Prisma P switchboards							
				NS/NT/NW			NS/NW			NW
Cat. no.	Rating	Height	Sealing kit	800 and 1000 A	1250 A	1600 A	2000 A	2500 A	3200 A	4000 A
	(A)	(mm)		Interface 08/16			Interface 2	0/25	Interface 32	Interface 40
				H164 ⁽³⁾			H244 ⁽³⁾		H404 ⁽³⁾	H404 ⁽³⁾
KTA1000	1000	104	KTB0104TT01							
KTA1250	1250	124	KTB0124TT01							
KTA1600	1600	164	KTB0164TT01							
KTA2000	2000	204	KTB0204TT01							
KTA2500	2500	244	KTB0244TT01							
KTA3200	3200	324	KTB0324TT01							
KTA4000	4000	404	KTB0404TT01							

(1) The compatibilities indicated correspond to the electrical connection possibilities; in all cases, coordination between circuit breaker and electrical busbar trunking must be checked.
(2) Coordination with a dry-type transformer, see the "Transformer" section, page 239.

The prefabricated connections installed in the switchboard are designed to operate without derating and can therefore operate at the rated circuit breaker current.

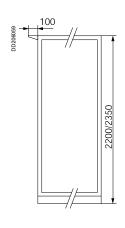
Phase order

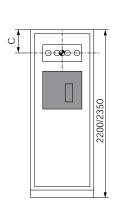

Using the dedicated interface, it is possible to change the phase order if it is different between the trunking and the switchboard.

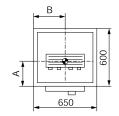
⁽³⁾ Height of the jointing unit in millimetres.

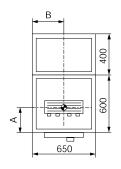
By Canalis interface Connection to Okken switchboards

Top direct connection (TDC)

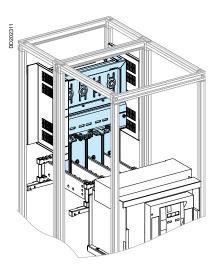



To 800 to 4000 A Masterpact NW circuit breakers
■ Enclosure 600 or 1000 mm deep, access through the front.


Position of the jointing unit


Circuit breaker		Dimensions (mm)			
		Α	В	С	
Drawout, 3P/4P ⁽¹⁾	NW08/16	175	325	156	
	NW20/25	175	325	156	
	NW32	175	325	156	
	NW40	175	325	156	

(1) To order, see "Catalogue numbers", page 78.

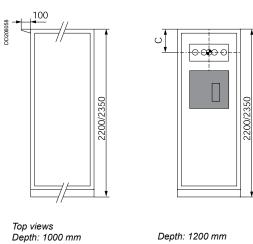

• Reference point

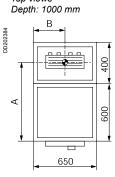
Connection to LV switchboards

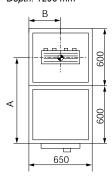
By Canalis interface Connection to Okken switchboards

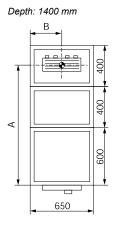
Canalis KTA

Rear connection (RC)

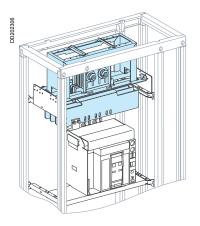

To 800 to 4000 A Masterpact NW circuit breakers


■ Enclosure 1000, 1200 or 1400 mm deep, access through the rear.


Position of the jointing unit


Circuit breaker		Dimer	Dimensions (mm)			
		Α			В	С
		Depth	(mm)			
		1000	1200	1400		
Drawout, 3P/4P ⁽¹⁾ ,	NW08/16	825	-	-	363	317
top position	NW20/25	825	-	-	363	317
	NW32	825	-	-	363	317
	NW40	-	953	-	363	156
Drawout, 3P/4P ⁽¹⁾ ,	NW08/16	825		-	363	942
medium position	NW20/25	825		-	363	942
	NW32	825		-	363	942
	NW40	-	953	-	363	881
Drawout, 3P/4P ⁽¹⁾ ,	NW08/16	-	-	1225	363	1417
bottom position	NW20/25	-	-	1225	363	1417
	NW32	-	-	1225	363	1417

(1) To order, see "Catalogue numbers", page 78.

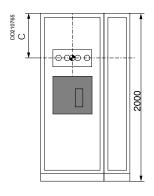

Reference point

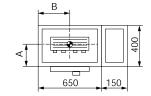
Bottom connection

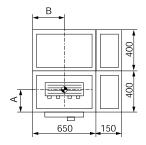
For installations with connections through the bottom, please consult us.

By Canalis interface Connection to Prisma P switchboards

Top direct connection (TDC)


To a Compact NS1250 or Masterpact NT1200 circuit breaker

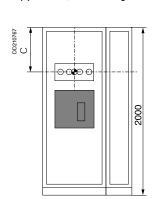

■ Enclosure 400 mm deep, access through the front.

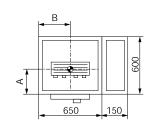

Position of the jointing unit

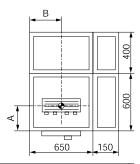
Circuit breaker		Dimen	sions(1) (m	ım)
		Α	В	С
Fixed, 3P/4P ⁽²⁾	NS800/1250	236	325	160
	NT08/12	260	325	160
Drawout, 3P/4P(2)	NS800/1250	260	325	170
	or 08/NT12			

- (1) Dimensions measured from switchboard framework.
- (2) To order, see "Catalogue numbers", page 76.

◆ Reference point

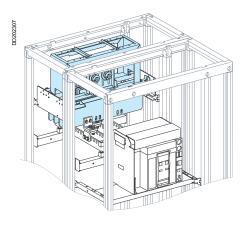

To 800 to 3200 A Masterpact NW circuit breakers


■ Enclosure 600 mm deep, access through the front.


Position of the jointing unit

Circuit breaker		Dimensions ⁽¹⁾ (mm)		
		Α	В	С
Fixed, 3P/4P ⁽²⁾	NW08/16	185	325	264
	NW20/25	185	325	289
	NW32	185	325	264
Drawout, 3P/4P(2)	NW08/16	185	344	164
	NW20/25	185	344	214
	NW32	185	344	214

- (1) Dimensions measured from switchboard framework.
- (2) To order, see "Catalogue numbers", page 75.

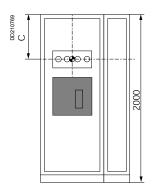

Connection to LV switchboards

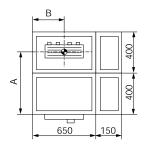
By Canalis interface

Connection to Prisma P switchboards

Canalis KTA

Rear connection (RC)

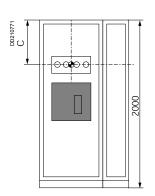

To a Compact NS1600 or Masterpact NT1600 circuit breaker


- Two enclosures combined:
- □ 1 enclosure, 400 mm deep, for the circuit breaker
- □ 1 enclosure, 400 mm deep, for the Canalis KT/switchboard interface.

Position of the jointing unit

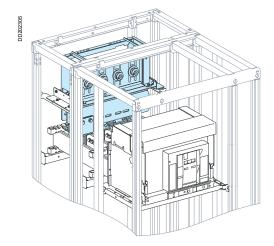
Circuit breaker		Dimen	Dimensions ⁽¹⁾ (mm)		
		Α	В	С	
Fixed, 3P/4P ⁽²⁾	NS800/1600 or NT08/16	638	325	160	
Drawout, 3P/4P ⁽²⁾	NS800/1600 or NT08/16	638	325	170	

- (1) Dimensions measured from switchboard framework.
- (2) To order, see "Catalogue numbers", page 76.

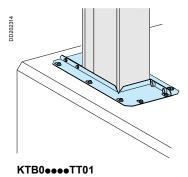

• Reference point


- To 800 to 4000 A Masterpact NW circuit breakers
 Two enclosures combined:
- □ 1 enclosure, 600 mm deep, for the circuit breaker
- □ 1 enclosure, 400 mm deep, for the Canalis KT/switchboard interface.

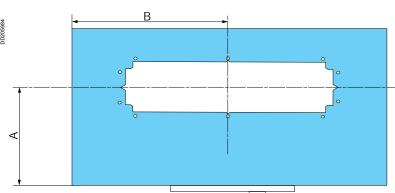
Position of the jointing unit

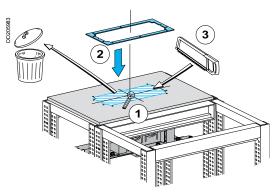

Disjoncteur		Dimen	Dimensions(1) (en mm)		
		Α	В	С	
Fixed, 3P/4P ⁽²⁾	NW08/16	815	325	264	
	NW20/25	757	325	414	
	NW32	774	325	414	
	NW40	790	325	414	
Drawout, 3P/4P(2)	NW08/16	815	317	414	
	NW20/25	815	342	414	
	NW32	815	317	439	
	NW40	790	325	414	

- (1) Dimensions measured from switchboard framework.
- (2) To order, see "Catalogue numbers", page 75.



• Reference point

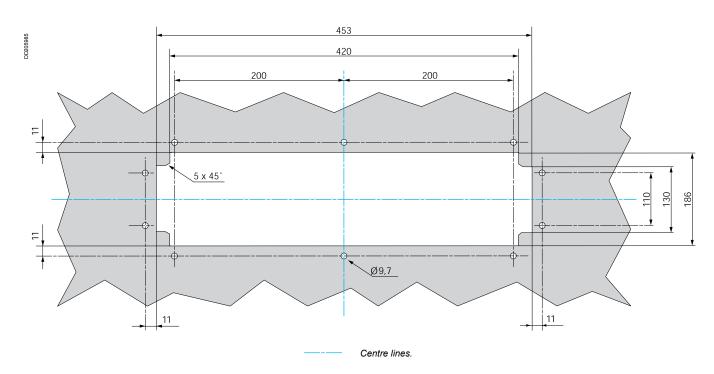

By Canalis interface Connection to Okken and Prisma P switchboards


Sealing kit



numbers and dimensions" pages. The kit includes a drilling and cut-out drawing for the switchboard roof.

The sealing kit must be ordered with the KT trunking. The size of the trunking determines that of the sealing kit. For the different types of kit, see the "Catalogue



Cut-out drawing (for all the ratings)

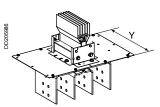
It is advised to cut out the switchboard roof in the workshop. Important: the dimensions are measured from switchboard framework.

Connection to LV switchboards

By universal feed unit

Canalis KTA

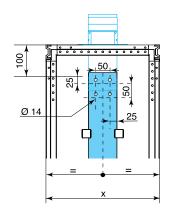
Busbars in switchboard (recommended distance between centres = 115 mm)

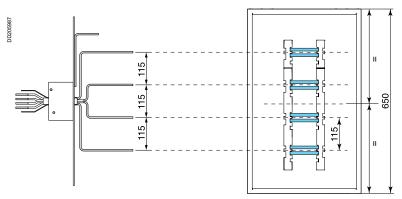

Canalis KT can be connected to switchboards via a universal connector. To simplify the work, it is advised to fit the switchboard busbars with a distance between centres of 115 mm.

Jointing with the switchboard is via a straight or elbow universal feed unit with a straight or flat outlet.

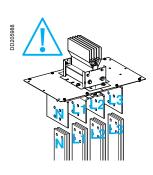
Connections are made using torque nuts offering both ease of use and the possibility of a visual check before energising.

Enclosure depth depending on the rating of the trunking

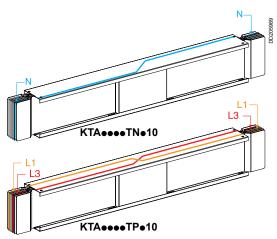

Rating of trunking (A)	Depth Y of universal feed unit plate (mm)	Minimum depth X of switchboard (mm)
1000 to 1250	230	400
1600 to 2500	350	400
3200 to 4000	510	600



KTA eeee FRee

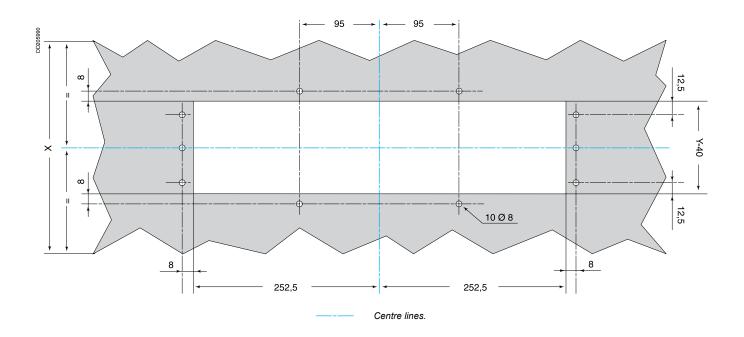


KTA0000YB2



Phase order

If the order of the phases in the trunking and the switchboard is different, it is advised to invert the phases in the switchboard. If that is not possible, use the phase and neutral crossover components. For more information, see the "Description" section, page 35 and "Catalogue numbers and dimensions" section, page 58.



Cut-out drawing

It is advised to cut out the switchboard roof in the workshop.

Cut-out for universal feeder unit, with distance between centres = 115 mm

Rating of trunking (A)	Depth Y of universal feed unit plate (mm)
1000 à 1250	230
1600 à 2500	350
3200 à 4000	510

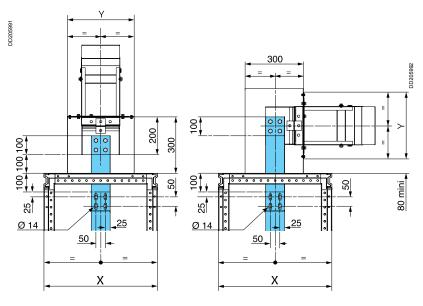
Connection to LV switchboards

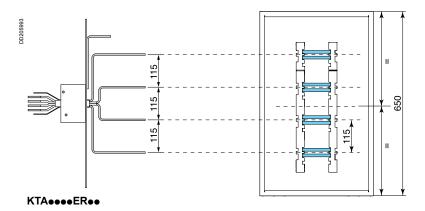
By feed and connection plates

Canalis KTA

Universal feed unit (recommended distance between centres = 115 mm)

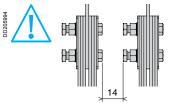
Connection plates are flexible copper bars, insulated or not, and drilled at one or both ends. They are supplied with bolts, washers and torque nuts for connection to straight or elbow universal feed units.

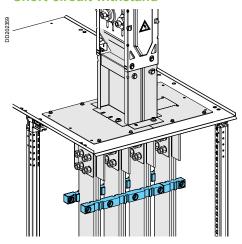

To simplify the work, it is advised to universal feed units with a distance between centres of 115 mm.


Enclosure depth depending on the rating of the trunking

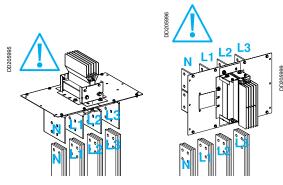
Rating of trunking (A)	Depth Y of universal feed unit plate (mm)	Minimum depth X of switchboard (mm)
1000 to 1250	230	400
1600 to 2500	350	400
3200 to 4000	510	600

Vertical incomer


Horizontal incomer



Selection of connection plates



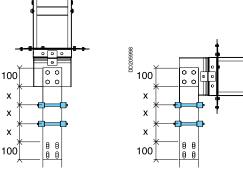
Short-circuit withstand

Phase order

The required number of connection plates is indicated in the table below.

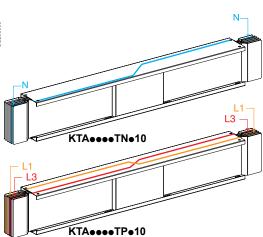
Busbar trunking r	ating (A) Bare copper conr	Bare copper connection plates per phase			
	Number (1)	Section (mm²)			
1000	2 (100 x 5)	1000			
1250	2 (100 x 5)	1000			
1600	2 (100 x 5)	1000			
2000	3 (100 x 5)	1500			
2500	3 (100 x 5)	1500			
3200	4 (100 x 5)	2000			
4000	5 (100 x 5)	2500			
5000	6 (120 x 5)	3600			

Connection plates	1 1	1 2	2 2	2 3	3 3
Busbar trunking rating (A)	1000 to 1600	2000 to 2500	3200	4000	5000


(1) The number of bimetal aluminium copper connections per phase is the same as bare copper ones.

Note: 2 (100 x 5) bare copper can be replaced by 2 (100 x 7) bimetal aluminium copper.

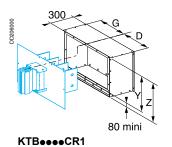
Short-circuit withstand table


Short-time withstand current (Icw)	Maximum distance between support centres X (mm)
≤ 43 kA	400
43 kA ≤ lcw ≤ 50 kA	225
50 kA ≤ lcw ≤ 100 kA	150

Vertical incomer Horizontal incomer

If the order of the phases in the trunking and the switchboard is different, it is advised to invert the phases in the switchboard. If that is not possible, use the phase and neutral crossover components. For more information, see the "Description" section, page 35 and

"Catalogue numbers and dimensions" section, page 58.

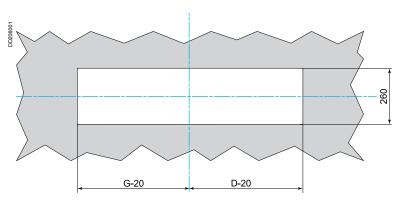


Connection to LV switchboards

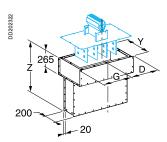
By feed and connection plates

Canalis KTA

Dimensions of protective covers



Horizontal incomer Rigid horizontal cover KTB •••• CR1 for ER straight outlet feed connectors type N1 to N6

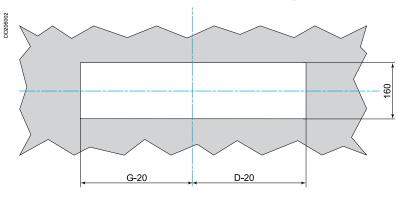

Rating (A)	Dimensio	Dimensions (mm)					
	Y	D	G	Z			
800 to 1250	230	220 to 475	220 to 475	310 to 800			
1600 to 2500	350	220 to 475	220 to 475	430 to 800			
3200 to 4000	510	220 to 475	220 to 475	590 to 800			

Cut-out drawing

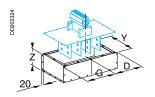
It is advised to cut out the switchboard roof in the workshop...

Centre lines.

KTB•••CR2


Vertical incomer

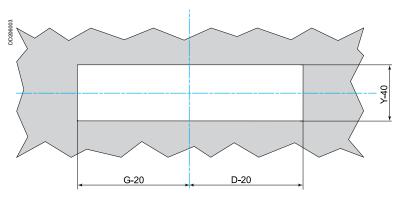
Rigid vertical cover KTB••••CR2 (400 to 800 mm height) for ER straight outlet feed connectors type N1 to N6


Rating (A)	Dimensi	Dimensions (mm)				
	Υ	D	G	Z		
800 to 1250	230	220 to 475	220 to 475	400 to 800		
1600 to 2500	350	220 to 475	220 to 475	400 to 800		
3200 to 4000	510	220 to 475	220 to 475	400 to 800		

Cut-out drawing

It is advised to cut out the switchboard roof in the workshop.

Centre lines.


KTB•••CR3

Rigid vertical cover KTB••••CR3 (100 to 400 mm height) for ER straight outlet feed connectors type N1 to N6

Calibre (A)	Dimensions (mm)						
	Υ	Y D G Z					
800 to 1250	230	220 to 475	220 to 475	400 to 800			
1600 to 2500	350	220 to 475	220 to 475	400 to 800			
3200 to 4000	510	220 to 475	220 to 475	400 to 800			

Cut-out drawing

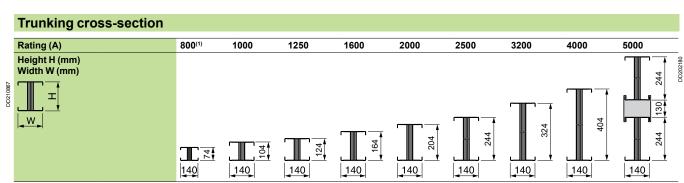
It is advised to cut out the switchboard roof in the workshop.

Centre lines.

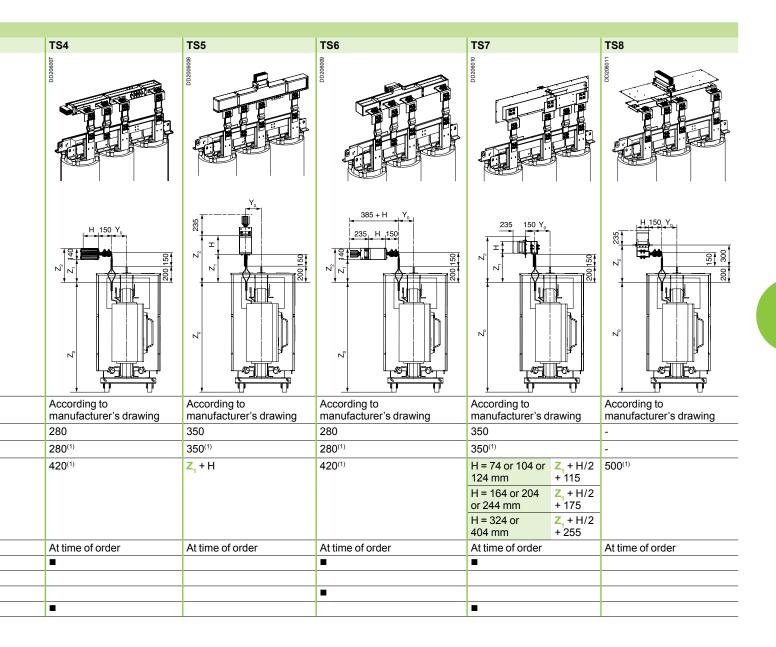
Connection to cast resin transformers

Selection guide

Canalis KTA


This guide will allow you to:

- choose the connection best suited to your layout (incoming direction, flat or edgewise busbar trunking, possibility of adjusting phase order)
- check the total height of the link with respect to the premises' ceiling height, dimension Z0 + Z2 (plan for 100 mm minimum between the upper point of the link and the ceiling)
- optimise your link whilst respecting the following rule:
- (Z₀ + Z₁)_{switchboard} = (Z₀ + Z₁)_{transformer} to avoid multiple elbows to change levels


 position the sections for the busbar trunking supports.

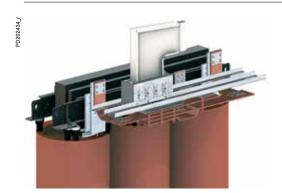
Type of connection	Connection with interface to		Universal connection	
	TS1	TS2	TS3	
7 GESCONCIA	MODEL COLOR OF THE PROPERTY OF	SOODOO OO O	DDD00000	
	Z 2 140		Z, T H T Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	
Z_0	See page 239	See page 239	According to manufacturer's drawing	
Z, minimum	230	238	350	
maximum	-	-	350	
Z ₂	Z ₁ + 140	Z, + H	Z ₁ + H	
Selecting phase order	Fixed	Fixed	At time of order	
Front or rear exit	■			
Right or left exit		•		
Edgewise layout		•		
Flat layout	•			

(1) To use standard connection plates L = 406 mm in accordance with our recommendations.

(1) Important: for the 800 A rating, indicate "KTA0800".

Connection to Trihal Dry type transformers

Selection guide


Canalis KTA 5000

KTA Trihal Dry type Transfomer connection

Box		Flexible links reference and quantity	Connection plates reference and quantity	Bolts sets reference and quantity
OB428667		DB428625	1902-90 1902-90	D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Catalogue number	Polarity	KTB0100YC50510B	KTB0000YP24	KTB0000YB4
KTB0001CR5	3P	12	3	6
	4P	16	4	8

Connection to Trihal cast resin transformers

By Canalis interface

The Trihal dry-type transformers are supplied with a specific interface tested to receive the Canalis KT busbar trunking. Jointing with the switchboard is achieved using a standard run section (straight, elbow section, etc) and a joint block identical to that for connecting run elements.

The Canalis KT/dry type transformer interface, which is fitted to the transformer, is designed to accept the transformer's 25 % overload in the case of forced ventilation.

The connections are tested and qualified in normal operating conditions with respect to temperature rise ($\Delta\theta$) and short-circuits (Isc).

The busbar trunking is quickly connected to the dry-type transformer using a simple joint block with torque nuts, guaranteeing tightening torque.

Table of compatibility between Canalis KT and the connection interface for naturally ventilated (AN) dry-type transformers.

Dry-typ	e transforme	er			Canalis KT	
Rating I nominal(1)		Interface			Cross-section	Туре
(kVA) (A)	Туре	Junction	Rating (A)			
630	887	1	H124	1250	140 x 104	KTA1000
800	1126	2	H164	1600	140 x 124	KTA1250
1000	1408	3	H204	2000	140 x 164	KTA1600
1250	1760	4	H244	2500	140 x 204	KTA2000
1600	2253	5	H324	3200	140 x 244	KTA2500
2000	2816	6	H404	4000	140 x 324	KTA3200
2500	3520	7	H404	5000	140 x 404	KTA4000

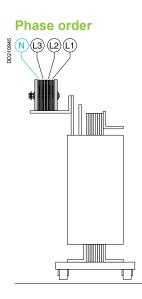
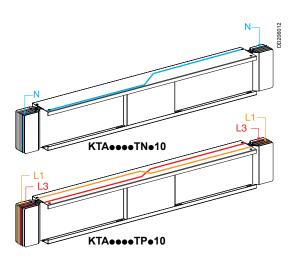
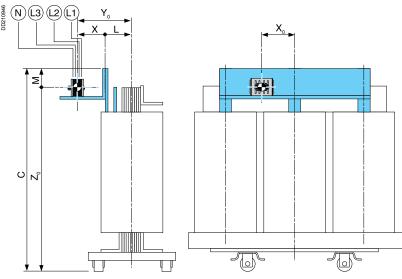

(1) I is given as an indication only and is calculated with U - 410 V.

Table of compatibility between Canalis KT and the connection interface for forced ventilated (AF) dry-type transformers.


Dry-typ	e transforme	er			Canalis KT	
Rating I nominal(1)		Interfa	ace		Cross-section	Type
(kVA) (A)	Туре	Junction	Rating (A)			
630	1108	1	H124	1250	140 x 124	1250
800	1407	2	H164	1600	140 x 164	1600
1000	1760	3	H204	2000	140 x 204	2000
1250	2253	4	H244	2500	140 x 244	2500
1600	2816	5	H324	3200	140 x 324	3200
2000	3520	6	H404	4000	140 x 404	4000

(1) I is given as an indication only and is calculated with U - 410 V.

If, for reasons of busbar trunking operating conditions or performance requirements, you have to use a rating other than those defined in the above tables, consult us.


If the phase order of the busbar trunking is different to that of the switchboard's busbars. it is recommended a phase inversion is carried out in the switchboard. If this cannot be done, use the phase and neutral transposition section. For more information, see the "Description" section, page 35 and "Catalogue numbers and dimensions" section, page 58.

Connection to Trihal cast resin transformers

By Canalis interface

Canalis KTA

• Reference point

Dimensions X, M and X,

Dimensions	Trans	Transformer power (kVA)							
(mm)	630	800	1000	1250	1600	2000	2500		
X	147	150	170	147	150	170	153		
M	100	100	108	93	124	144	149		
X ₀	233	215	265	245	300	300	322.5		
Interface type	1	2	3	4	5	6	7		

Dimensions Y_0 and Z_0

 $Y_0 = X + L$ $Z_0 = C - M$

Dimensions C and L are different according to country standards.

French standard

FT no.235627 rev. 3 - Primary voltage: 20 kV - Insulation voltage: 24 kV -Secondary voltage: 410 V

Dimensions	Transf	former p	ower (kV	A)			
(mm)	630	800	1000	1250	1600	2000	2500
С	1614	1744	1749	1929	2089	2209	2297
L	220	225	240	240	240	257	275

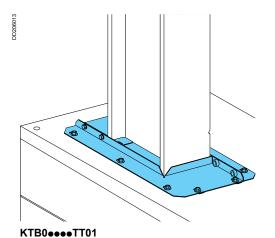
German standard

FT no.235763 rev. 0 - Primary voltage: 20 kV - Insulation voltage: 24 kV -Secondary voltage: 400 V

Dimensions	Transformer power (kVA)							
(mm)	630	800	1000	1250	1600	2000	2500	
С	1734	1744	1749	2019	1979	2199	2279	
L	210	220	225	245	255	255	265	

FT no.235515 rev. 3 - Primary voltage: 20 kV - Insulation voltage: 24 kV -

occondary voltage. 420 v									
Dimensions Transformer power (kVA)									
(mm)	630	800	1000	1250	1600	2000			
С	1614	1744	1879	1929	1979	2194			
L	220	225	215	245	250	245			

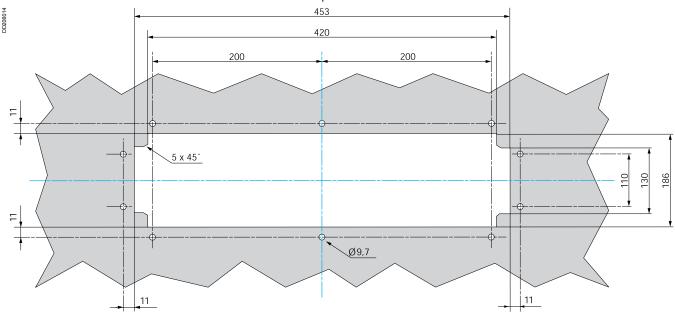

Belgian standard

FT no.235820 rev. 0 - Primary voltage: 15 kV - Insulation voltage: 17.5 kV -Secondary voltage: 400 V

Dimensions	Transformer power (kVA)							
(mm)	630	800	1000	1250	1600	2000	2500	
С	1484	1564	1694	1844	2054	2149	2164	
L	215	210	215	225	230	255	235	

Dimensions

Sealing kit



The sealing kit must be ordered with the KT busbar trunking. The busbar trunking size defines the sealing kit size. For the different types of kit, see «Catalogue numbers / Dimensions».

The kit includes a drilling and cut-out template for the dry-type transformer panels.

Cut-out drawing

It is recommended that the cutting-out of the transformer panels is done in the workshop.

Junction axis.

Connection to cast resin transformers

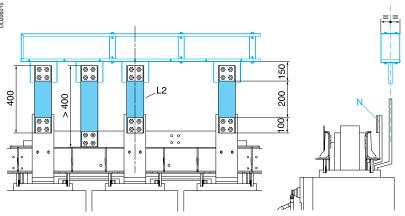
By universal feed and connection plates

Canalis KTA

Canalis KT can be connected to cast resin transformers using a universal feed. The connection is made using a flexible busbar (connection plates or braids) to avoid transmitting vibrations and expansions. The connection plates are made up of either insulated or non-insulated flexible copper bars, drilled at one or both ends. A nut and bolt kit allows connection to the feed.

The connections use torque-head bolts which provide both ease of installation and visual inspection of correct tightening before energising.

If the transformer is supplied with panels, provide for an additional cover to maintain the protection degree.


Choice of Canalis KT busbar trunking rating according to transformer power.

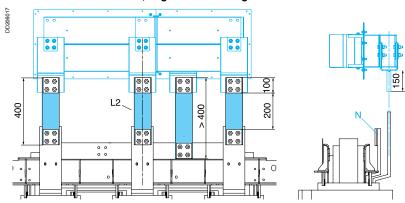
Transformer		KTA rating at nominal
Power (kVA)	I nominal ⁽¹⁾ (A)	power ⁽²⁾ (A)
630	887	1000
800	1126	1250
1000	1408	1600
1250	1760	2000
1600	2253	2500
2000	2816	3200
2500	3520	4000

⁽¹⁾ I is given as an indication only and is calculated with U = 410 V and at transformer nominal setting, without forced ventilation.

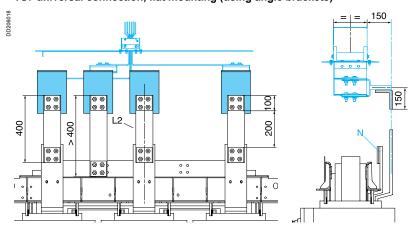

Recommended configurations for shortcircuit withstand (connection plate L = 400 mm)

TS3 and TS5 universal connection, edgewise mounting

KTA••••EL•1 or KTA••••EL•2 or KTA••••EL•3 or KTA••••EL•4

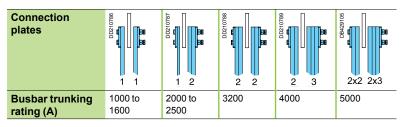

TS4 and TS6 universal connection, flat mounting (using angle brackets)

KTA••••EL•1 or KTA••••EL•2 or KTA••••EL•3 or KTA••••EL•4 with angle bracket KTB0000YE1


⁽²⁾ The busbar trunking rating is defined for normal operating conditions.

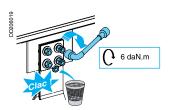
TS7 universal connection, edgewise mounting

KTA••••EL•5


TS7 universal connection, flat mounting (using angle brackets)

KTA●●●EL●5 with angle bracket KTB0000YE

The number of connection plates is defined in the table below:


Busbar trunking rating (A)	Bare copper conne	Bare copper connection plates per phase					
	Number (1)	Cross-section (mm ²)					
1000	2 (100 x 5)	1000					
1250	2 (100 x 5)	1000					
1600	2 (100 x 5)	1000					
2000	3 (100 x 5)	1500					
2500	3 (100 x 5)	1500					
3200	4 (100 x 5)	2000					
4000	5 (100 x 5)	2500					
5000	10 (YC5 - 100 x 5)	5000					

(1) The number of bimetal aluminium copper connections per phase is the same as bare copper ones.

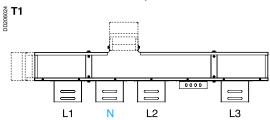
Note: 2 (100 \times 5) bare copper can be replaced by 2 (100 \times 7) bimetal aluminium copper.

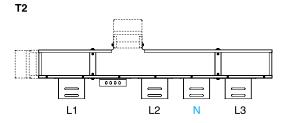
Definition of connection plates

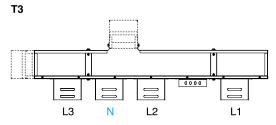
Connection to cast resin transformers

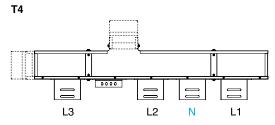
By universal feed and connection plates

Canalis KTA

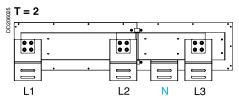

Phase order

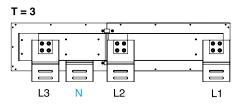

Phase selection is made when the feed is ordered.


Phase L2 is fixed and can therefore be used as a reference for installing the feed on the transformer.


The different phase selection possibilities (T)

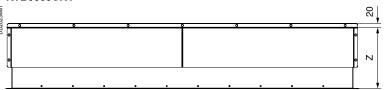
■ Dedicated feeds N1 to N4,





Important: the drawings and references above correspond to a phase order of N321, joint block side. If the phase order on the joint block side is N123, inverse T=1 with T=3 and T=2 with T=4.

■ Feed with flat bars N5.

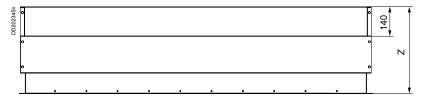

Important: the drawings and references above correspond to a phase order of N321, joint block side. If the phase order on the joint block side is N123, inverse L1 and L3 on the transformer side marking.

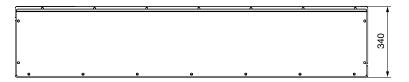
Dimensions of protective covers

Vertical protection covers for dry-type transformer feeds N1, N2, N3 and N4 $\,$

Rating (A)	Dimension	ensions (mm)					
	Υ	Z					
		Minimum	Maximum				
800 to 1250	230	200	350				
1600 to 2500	350	200	350				
3200 to 4000	510	200	350				

KTB0000CR4



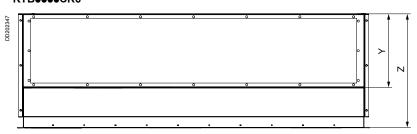


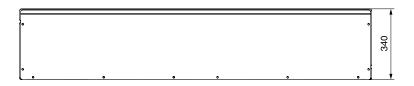
Horizontal protection covers for dry-type transformer feeds N1, N2, N3 and N4 $\,$

Rating (A)	Dimensions	s (mm)	
	Υ	Z	
		Minimum	Maximum
800 to 1250	230	330	480
1600 to 2500	350	330	480
3200 to 4000	510	330	480

KTB0000CR5

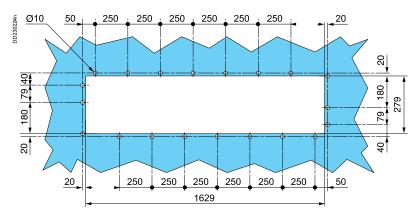
Connection to cast resin transformers


By universal feed and connection plates


Canalis KTA

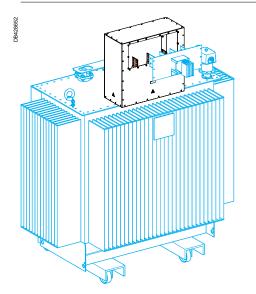
Horizontal protection cover for dry-type transformer feed N5

Rating (A)	Dimension	ıs (mm)		
	Υ	Z		
		Minimum	Maximum	
800 to 1250	230	380	530	
1600 to 2500	350	500	650	
3200 to 4000	510	660	810	


KTB••••CR6

Cut-out drawing for dry-type transformer panels

It is recommended that the cutting-out of the transformer panels is done in the workshop.



View from the top of the transformer.

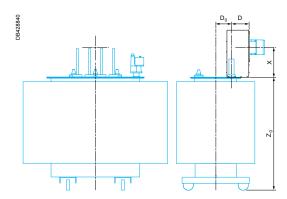
Connection to Minera immersed transformers

Horizontal selection guide

Canalis KTA

Canalis KT is easily connectable to Minera transformers.

A pre-designed interface including cover, flexible links and bolts is installed in place of the cable box delivered (or not) with the transformer.


This solution that connects end feed units ER1 to ER6, make the design simple and fast.

- Position of the flange is given by the table 1.
- Products that compose the interface are given in the table 2.

The dimensions D and X are given by the Table 1.

D_o and Z_o must be taken from the transformer documentation.

The interface is always centered in the middle of the transformer indifferently for the 3P or 4P versions.

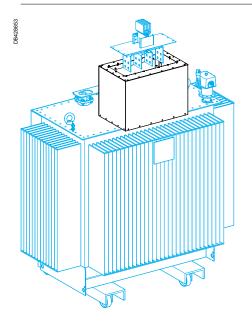
KTA Miner	ra interfaces comp	osition - horizor	ital inco	mer
	Protective covers		Flexible I	inks reference and quantity
	DB428461		D9428071	
Tuna	Catalagua numbar	D (mama) 7 (mama)	Dolovity	KTD0400VC207A

Туре	Catalogue number	D (mm)	Z (mm)	Polarity	KTB0100' (dimension L = 320 A = 32 B = 60 C = 34 D = 32 E = 2 F = 2 Y = 25		L = 350 A = 32 B = 31 C = 15 D = 32 E = 2 Y = 25	L = 350 A = 32 B = 31 C = 53 D = 32 E = 2 F = 2 Y = 25	L = 320 A = 32 B = 40 C = 15 D = 32 E = 2 F = 2 Y = 25	L = 320 A = 32 B = 40 C = 53 D = 32 E = 2 Y = 25	
KTA H1	KTB0230CR71	150	320	3P 4P	6 8						
KTA H2	KTB0350CR71	150	320	3P 4P	6						
KTA H3	KTB0350CR72	150	350	3P 4P		6					
KTA H4	KTB0350CR72	150	350	3P 4P		9					
KTA H5	KTB0350CR73	150	400	3P 4P			6	3 5			
KTA H6	KTB0510CR71	150	435	3P 4P					6 8	6 8	
KTA H7	KTB0510CR72	180	470	3P 4P							
KTA H8	KTB0510CR72	180	470	3P 4P							
KTA H9	KTB0510CR73	180	510	3P 4P							
KTA H10	KTB0726CR71	180	469	3P 4P							

Interface details, see page 90.

Horizontal incomer interface

Minera t	ransform	er	Canalis KT feed unit ER1, ER2, ER3, ER4, ER5, ER6								
Rating (kVA)	l nominal (A)	Bar bushing dimensions (mm)	Between centres J, K and M (mm)	KTA1000	KTA1250	KTA1600	KTA2000	KTA2500	KTA3200	KTA4000	KTA5000
630	887	31.5 31.5 31.5	150	Type KTA H1	Type KTA H1						
800	1126	©11 0145			Type KTA H1	Type KTA H2					
1000	1408	315 12 315 12 31				Type KTA H3	Type KTA H4				
1250	1760	8 31.5 100 31.5 31.5 11.2	170				Type KTA H5	Type KTA H5			
1600	2253	31.5 88 8						Type KTA H5	Type KTA H6		
2000	2816	\$ 120 \$ 35 \$ 50 \$ 0 18							Type KTA H7	Type KTA H8	
2500	3520	7 120 7 50 25	1							Type KTA H9	Type KTA H10
3150	4435	20 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0									Type KTA H10


						Bolts sets refer	Connection plates		
						SMECHED OF THE PROPERTY OF THE	DOMESTICAL DESCRIPTION OF THE PROPERTY OF THE	Description	DB428682
KTB0120Y						KTB0000YB3	KTB0000YB4	KTB0000YB5	KTB0000YP21
(dimension									
A = 50 B = 24 C = 20 D = 50 E = 2 F = 2	L = 370 A = 50 B = 24 C = 50 D = 50 E = 2 F = 2 Y = 20	A = 50 B = 41 C = 20 D = 50 E = 2	L = 400 A = 50 B = 41 C = 50 D = 50 E = 2 F = 2 Y = 20	L = 350 A = 50 B = 24 C = 20 D = 50 E = 2 F = 2 Y = 50	L = 350 A = 50 B = 24 C = 50 D = 50 E = 2 F = 2 Y = 20				
						1		1	
						1		1	
						1		1	
						1		1	
						1		1	
						1		1	
						1		1	
						1		1	
						1		1	
						1		1	
						1		1	
						1		1	
6	6						2		
8	8						2		
9	6						2		
12	8						2		
		9	6				2		
		12	8				2		
				9	9		1		3
				12	12		1		4

Set of bolts details, see page 105.

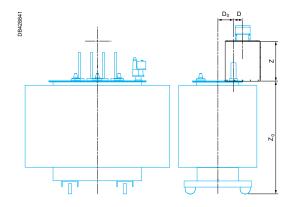
Connection to Minera immersed transformers

Vertical selection guide

Canalis KTA

Canalis KT is easily connectable to Minera transformers.

A pre-designed interface including cover, flexible links and bolts is installed in place of the cable box delivered (or not) with the transformer.


This solution that connects end feed units ER1 to ER6, make the design simple and fast.

- Position of the flange is given by the table 1
- Products that compose the interface are given in the table 2.

The dimensions D and Z are given by the Table 1.

D₀ and Z₀ must be taken from the transformer documentation.

The interface is always centered in the middle of the transformer indifferently for the 3P or 4P versions.

KTA Minera interfaces composition - vertical incomer

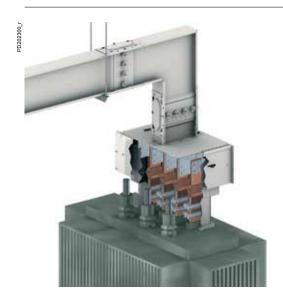
Protective covers

				7							
Туре	Catalogue number	D (mm)	Z (mm)	Polarity	KTB0100 (dimension L = 320 A = 32 B = 50 C = 15 D = 32 E = 2 F = 2 Y = 31		L = 320 A = 32 B = 60 C = 34 D = 32 E = 2 F = 2 Y = 25	L = 320 A = 32 B = 60 C = 15 D = 32 E = 2 F = 2 Y = 25	L = 320 A = 32 B = 60 C = 53 D = 32 E = 2 F = 2 Y = 25	KTB0120 (dimension L = 320 A = 50 B = 32 C = 35 D = 50 E = 2 F = 2 Y = 35	NYC307A ns in mm) L = 340 A = 50 B = 20 C = 35 D = 50 E = 2 F = 2 Y = 35
KTA V1	KTB0230CR81	106	480	3P 4P	3	3	. 20	1 20	1 20	1 00	
KTA V2	KTB0350CR81	106	580	3P 4P	4	4	6				
KTA V3	KTB0350CR81	106	580	3P 4P			9				
KTA V4	KTB0350CR82	126	600	3P 4P				6 7	3 5		
KTA V5	KTB0510CR81	126	600	3P 4P				6	6		
KTA V6	KTB0510CR82	179	615	3P 4P						12 16	
KTA V7	KTB0510CR82	179	615	3P 4P						15 20	
KTA V8	KTB0510CR82	179	615	3P 4P							15 20
KTA V9	KTB0726CR81	179	591	3P 4P							21 28

Interface details, see page 91.

Vertical incomer interface

Minera transformer		Canalis K	Canalis KT feed unit ER1, ER2, ER3, ER4, ER5, ER6								
Rating (kVA)	l nominal (A)	Bar bushing dimensions (mm)	Between centres J, K and M (mm)	KTA1000	KTA1250	KTA1600	KTA2000	KTA2500	KTA3200	KTA4000	KTA5000
630	887	31.5 31.5 31.5	150	Type KTA V1	Type KTA V1						
800	1126	Ø115 Ø145			Type KTA V1	Type KTA V2					
1000	1408	31.5 12 31.5 12 31.				Type KTA V2	Type KTA V3				
1250	1760	57 31.5 100 31.5 1 1 31.5 1.12	170				Type KTA V4	Type KTA V4			
1600	2253	31.5 98 8						Type KTA V4	Type KTA V5		
2000	2816	8 120 120 135 120 135 120 135 120 135 135							Type KTA V6	Type KTA V7	
2500	3520	50 25 -11-20								Type KTA V8	Type KTA V9
3150	4435	20 0 18 0 18 0 18 0 18 0 18 0 18 0 18 0									Type KTA V9


Connection plates	s reference and qu	antity			Bolts sets ref	erence and qu	antity
08422780	1	PARCHOL PROPERTY OF THE PROPER	0 ~-	A 2 200	8. 80 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.		
KTB0000YP11	KTB0000YP12	KTB0000YP13	KTB0000YP14	KTB0000YP22	KTB0000YB3	KTB0000YB4	KTB0000YB5
					1		1
					1		1
3					2		1
4					2		1
3					2		1
4					2		1
	3				2		1
	4				2		1
		3			2		1
		4			2		1
			3		1	2	
			4		1	2	
			3		1	2	
			4		1	2	
			3		1	2	
			4		1	2	
				3		1	
				4		1	

Set of bolts details, see page 105

Connection to oil immersed transformers

By feed and connection plates or braids

Canalis KTA

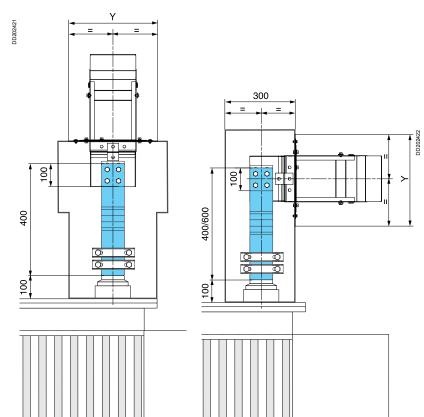
Connection to an oil immersed transformer is made using flexible bars (connection plates) to avoid transmitting transformer vibrations to the busbar trunking and to limit the stress on connection terminals.

Choice of busbar trunking

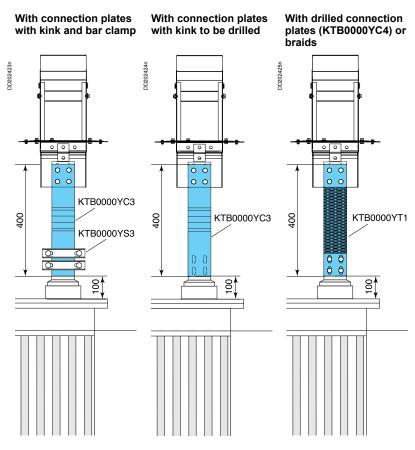
Dry-type transfe	ormer	Canalis KT alu trunking	Canalis KT aluminium busbar trunking		
Rating (kVA)	l nominal ⁽¹⁾ (A)	Rating (A)	Cross-section		
500	704	800	140 x 74		
630	887	1000	140 x 104		
800	1126	1250	140 x 124		
1000	1408	1600	140 x 164		
1250	1760	2000	140 x 204		
1600	2253	2500	140 x 244		
2000	2816	3200	140 x 324		
2500	3520	4000	140 x 404		

(1) I is given as an indication only and is calculated with U - 410 V.

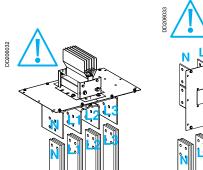
Note: if, for reasons of busbar trunking operating conditions or performance requirements, you have to use a rating other than those defined in the above tables, consult us.

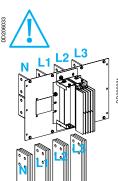

Protective cover width

Busbar trunking rating (A)	Dimensions "Y" of the feed
1000 to 1250	230
1600 to 2500	350
3000 to 4000	510

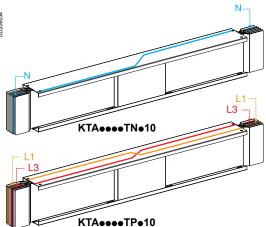

Horizontal incomer

Recommended configurations for shortcircuit withstand (connection plate L = 400 mm)


Vertical incomer

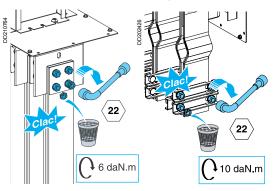


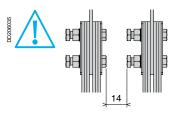
Several connection possibilities



Phase order

If the phase order of the busbar trunking is different to that of the switchboard's busbars, it is recommended a phase inversion is carried out in the switchboard. If this cannot be done, use the phase and neutral transposition section. For more information, see the "Description" section, page 35 and "Catalogue numbers and dimensions" section, page 58.




Connection to oil immersed transformers

By feed and connection plates or braids

Canalis KTA

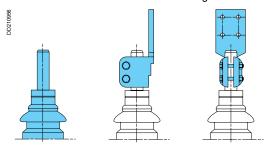
Definition of connection plates

Definition of braids

The number of connection plates is defined in the table below:

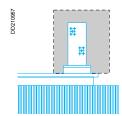
Busbar trunking rating (A)	Bare copper connection	plates per phase
	Number	Section (mm²)
1000	2 (100 x 5)	1000
1250	2 (100 x 5)	1000
1600	2 (100 x 5)	1000
2000	3 (100 x 5)	1500
2500	3 (100 x 5)	1500
3200	4 (100 x 5)	2000
4000	5 (100 x 5)	2500
5000	8 (120 x 5)	4800

Connection plates	1 1	1 2	2 2	2 3	BB BB 4 4 4
Busbar trunking rating (A)	1000 to 1600	2000 to 2500	3200	4000	5000


The number of braids is defined in the table below:

Busbar trunking rating (A)	Braids per phase	
	Number	Cross-section (mm²)
1000	1	600
1250	2	1200
1600	2	1200
2000	2	1200
2500	3	1800
3200	3	1800
4000	4	2400
5000	6	3000

Braids	1	9883000 HI 1	1 2	888802QQQ 2 2	3 3
Busbar trunking rating (A)	1000	1250 to 2000	2500 to 3200	4000	5000


Connection to porcelain bushings

Connection terminals of the type defined below must be used. These are available in the transformer manufacturers' catalogues.

Cover

The transformers can be supplied with or without a low voltage cover. This cover is not used in our solutions.

Schneider

Recommendations

Introduction Presentation and description Catalogue numbers and dimensions Design guide Installation guide	2. 4. 15 19:
Reception, handling and storage	250
Maintenance Run sections	25 6 256
Recycling	259
Index	260

Reception, handling and storage

Canalis KTA

This document contains practical information, lays out the general recommendations (as a complement to the installation regulations) and specifies the basic instructions that must be respected when handling and storing Schneider Electric Canalis busbar trunking system.

The purchaser's engineering, installation and operating staff must become acquainted with this document and become familiar with the appearance and characteristics of each of the Canalis busbar trunking system's components. Appropriate planning and coordination between the different job functions is indispensable for ensuring an efficient installation of the equipment.

Each Canalis busbar trunking system is carefully inspected and packaged at the assembly plant.

The entire system is checked both structurally and electrically. At the end of inspection, the busbar trunking system is prepared for shipping. Each section is packed to guarantee easy handling before its installation. The catalogue number is written on each shipping unit.

Warning

RISK OF ELECTRIC SHOCK, BURNS OR EXPLOSION

- Protect the equipment against all contact with water, salt, concrete and other corrosive surroundings both before and during installation.
- Outdoor equipment is not resistant to bad weather until after it has been fully and correctly installed.
- Do not sit or walk on the equipment.

If these instructions are not respected, the equipment may deteriorate leading to a risk of serious or mortal injury.

Reception

Upon reception, check the information on the shipping note corresponds to the equipment received to ensure all of the order has been received and shipped. Complaints concerning missing components or other errors must be sent in writing to Schneider Electric SAS within 30 days from the date the shipping item was received. If no complaint has been received within 30 days from the date the shipping item was received, Schneider Electric SAS will no longer be responsible for repairs or replacements that may be required.

Upon reception, check the various units of the busbar trunking system immediately to identify any damage that has occurred during transport.

If there is observed or suspected damage, file a claim immediately with the carrier and inform the nearest Schneider Electric office.

Handling

Handle Canalis products with the greatest of care to avoid damaging the internal components of the system and to avoid changing the external appearance of the various parts, as well as the bar ends (connection terminals).

The busbar trunking must be constantly supported by independent means, in such a way its weight is not resting on the top of the transformers or distribution switchboards.

The distance between these support means must not exceed 3 metres.

Avoid exposing the busbar trunking to twisting, embossing or impacts, and all other actions likely to causing damage.

Ensure the handling equipment available at the site of installation is suitable for handling busbar trunking. In particular, check the lifting capacity of the crane or the other lifting equipment to be used.

Take great care when unpacking the equipment:

- use a nail-head puller when unpacking wooden crates
- if hauling the busbar trunking with a crane, use Nylon slings to spread the weight of the unit being lifted
- if using cables, insert a spacing means to avoid damaging the busbar trunking
- if using a forklift truck, position the busbar trunking on the forks in such a way the weight is evenly distributed.
- 1 Cut the strapping holding the packaging case using suitable cutting tools.
- 2 Use suitable tools to remove the strengthened steel packaging at each end of the busbar trunking.

Take care not to damage the steel box so as not to damage the busbar trunking. Avoid the use of objects with sharp edges when lifting the busbar trunking.

3 - Dispose of all used packaging in an appropriate way.

Never drag the busbar trunking along the floor. Do not use the end bars to lift sections of the busbar trunking.

Protection against humidity during storage

If the busbar trunking is not installed and commissioned immediately, leave it in the original Canalis packaging and store it in a clean and dry place at a uniform temperature.

The busbar trunking must not be stored outside. However, if outside storage is necessary, cover the busbar trunking in such a way as to protect it from bad weather and to avoid contact with the elements.

Temporary electrical heating must be provided for underneath the covering means to prevent condensation.

The supplied heat must be of suitable temperature and uniformly distributed underneath the covering means.

Outdoor busbar trunking is not resistant to bad weather until after it has been fully and correctly installed.

During installation, take particular care to protect rising mains from humidity arising from unfinished roofs, walls and other similar elements.

Maintenance

Run sections

Canalis KTA

Recommended periodical maintenance procedures

Electrical equipment should be installed, operated, serviced, and maintained only by qualified personnel.

No responsibility is assumed by Schneider Electric for any arising out of the use of this material.

A qualified person is one who has skills and knowledge related to the construction and operation of electrical equipment and its installation, and has received safety training to recognize and avoid the hazards involved.

The frequency and the level of the maintenance depend of the criticality of the application and the environmental conditions.

These recommendations regard the busbar trunking system. For all devices fitted in tap-off units, the manufacturer's recommendations must be complied with.

A basic maintenance must be performed for any type of applications, under any conditions

Every year inspect the external appearance of busbar trunking lengths, accessories and supports.

Check if there is no:

- deformation, damage or dirt
- dislocation, bending, misalignment and other abnormality of the connecting covers, hangers and plug-in units
- junction blocks or terminals discoloured, corroded or pitted, or show signs it has been exposed to high temperatures
- change in the environment that can affect the busway operation such as water, moisture, high temperature, corrosive gas, immoderate vibration, dust, air circulation, new hot air source.

Every year inspect the external appearance of tap-off units.

■ Remove dust, water and oil deposits, and all other conductive bodies from the sensitive zones.

The contact between busbar trunking and tap-off boxes does not need specific maintenance: Busbar trunking contacts consist of sprung silver plated contact jaws to ensure optimum contact quality.

In event of electrical default, fire, water leakage, earthquake or any important change an immediate inspection must be carried out.

A more specific maintenance must be performed when the busbar trunking system feeds critical applications or in case of unfavourable environmental conditions Critical applications means: needs of high level of continuity of service such as hospital secured power distribution, data centre IT or cooling power supply or with a high load factor.

Unfavourable conditions are: high ambient temperature, high level of humidity, environment with a lot of dust, vibrations or similar.

Every year achieve a basic maintenance as described in the above chapter.

Every year check is there is no abnormal temperature.

- If the busbar trunking is accessible, carry out infrared temperature measurements on all the electrical connections (junction blocks, terminal connections, tap-off units).
- If the busbar trunking is not accessible, install a thermal monitoring system which will communicate temperatures to a remote supervision.

These operations are relevant only if the busbar trunking has reached a stabilized temperature and if the measure of current has been done.

A periodic thermal monitoring allows tracking and detecting abnormal drifts. In case of abnormal results, check with a torque wrench, all the connections.

Туре	Torque (N.m)
Junction block bolts	60 ± 10%

If these values decrease significantly over time, consult Schneider Electric for a deeper analysis

If needed concerned material must be replaced with new factory mounted products. Consult your local Schneider Electric office for all replacements.

Before re-energising the busbar trunking, carry out an insulation resistance test in compliance with the instructions given in the "Testing and commissioning procedure" section.

After having performed all the necessary inspections and repairs mentioned above, it may be desirable to carry out infrared temperature measurements on all the electrical connections.

Recycling

Recycling busbar trunking

Example: 1 kg of PVC generates 1 kg of waste.

Canalis busbar trunking can be reused. Canalis busbar trunking is designed for a long service life and can easily be dismantled, cleaned and reused.

All packaging materials can be recycled (cardboard or recyclable polyethylene

All Canalis products are designed for safe end-of-life recycling. PVC, on the other hand, requires neutralisation of the hydrochloric acid produced using lime and generates dioxins that are extremely toxic.

Canalis helps conserve natural resources

The depletion of raw materials (copper, plastics, etc.) is one of our ongoing concerns.

For this reason, we have optimised the used of all materials used to make our busbar trunking.

- Reduction of dangerous or polluting materials. We design our products to meet future European directives.
- Reduction in the weight of insulating materials.

 Reduction in the use of plastics for improved fire performance: less energy released during combustion, thereby limiting propagation and facilitating extinction (lower calorific value).

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
03000			87817	DBA 115 CONNECTING BLOCK FOR KT BBT 4000A 3P TDC	78
3561)4000	CANALIS SUPPORT	77	87818	DBA 115 CONNECTING BLOCK FOR KT BBT	78
4694	CONNECTION SUPPORT, 115 MM BETWEEN CENTRES	77	87821	4000A 4P TDC DBA 115 CONNECTING BLOCK FOR KT BBT 800/1600A 3P RC	78
4703	CANALIS INTERFACE, 1600 A, 3P	76	87822	DBA 115 CONNECTING BLOCK FOR KT BBT	78
4704 4711	CANALIS INTERFACE, 1600 A, 4P CANALIS CONNECTION FOR FRONT-	76 77	87823		78
)4712	CONNECTED NS-NT, 3P CANALIS CONNECTION FOR FRONT-	77	87824	2000/2500A 3P RC DBA 115 CONNECTING BLOCK FOR KT BBT 2000/2500A 4P RC	78
04713	CONNECTED NS-NT, 4P CANALIS CONNECTION FOR REAR- CONNECTED NS-NT, 3P	77	87825		78
)4714	CANALIS CONNECTION FOR REAR- CONNECTED NS-NT, 4P	77	87826		78
04715	CANALIS CONNECTION, 1600 A, NW, 3P	75	87827	DBA 115 CONNECTING BLOCK FOR KT BBT	78
04716	CANALIS CONNECTION, 1600 A, NW, 4P	75	07000	4000A 3P RC	70
04725	CANALIS CONNECTION, 2500 A, NW, 3P	75 75	87828	DBA 115 CONNECTING BLOCK FOR KT BBT 4000A 4P RC	78
04726	CANALIS CONNECTION, 2500 A, NW, 4P CANALIS CONNECTION, 3200 A, NW, 3P	75 75			
04735 04736	CANALIS CONNECTION, 3200 A, NW, 3P	75 75	KH0		
)4736)4737	CANALIS CONNECTION, 3200 A, NW, 4P	75 75	KH010SD85	KH BOX PLUG IN 3L PEN SECT MULLER 100 T00	142
)4738	CANALIS CONNECTION, 4000 A, NW, 4P	75	KH016CB	CONNECTING LINKS SHIELD	145
)4851	FRONT CONNECTION COVER FOR	77	KH016CB311571	CONNECTING LINKS SHIELD	145
	VERTICAL FIXED NS1600		KH018CB	CONNECTING LINKS SHIELD	145
14852	FRONT CONNECTION COVER FOR VERTICAL FIXED NS1600-NT	77	KH018CB311571 KH018CB86NS	CONNECTING LINKS SHIELD CONNECTING LINKS TAP OFF BOX SB	145 146
14853	REAR CONNECTION COVER FOR VERTICAL FIXED NS1600	//	KH025SB131	NS1000 KH FIXED BOX 3L PE FUS 250 T2 N1	145
)4854	REAR CONNECTION COVER FOR VERTICAL	77	KH025SB131 KH025SB132	KH FIXED BOX 3L PE FUS 250 T2 N1 KH FIXED BOX 3L PE FUS 250 T2 N2	145
	FIXED NS1600-NT		KH025SB132	KH FIXED BOX 3L N PE FUS 250 T2 N1	145
4861	FRONT CONNECTION COVER FOR NW	77	KH025SB141	KH FIXED BOX 3L N PE FUS 250 T2 N2	145
4863	REAR CONNECTION COVER FOR NW	77	KH025SD14	KH BOX PLUG IN 3L N PE FUSES 250 T2	140
4871	CANALIS COVER	77	KH025SD15	KH BOX PLUG IN 3L PEN FUSES 250 T2	140
			KH025SD541	KH BOX PLUG IN 3L N PE NSX250	139
08000			KH025SD542	KH BOX PLUG IN 3L N PE NSX250	139
8903	12 ADHESIVE LABEL HOLDERS, H=24 MM,	126	KH025SD551	KH BOX PLUG IN 3L PEN NSX250	139
8905	W=432 MM 12 ADHESIVE LABEL HOLDERS, H=24 MM,	126	KH025SD552	KH BOX PLUG IN 3L PEN NSX250	139
10303	W=180 MM	120	KH025SD85	KH BOX PLUG IN 3L PEN SECT MULLER 250 T1	142
8907	12 ADHESIVE LABEL HOLDERS, H=24 MM,	126	KH025SE341	KH BOX PLUG IN 3L N PE INTER FUSES 250 T1	144
	W=650 MM		KH025SE351 KH025ZA05	KH BOX PLUG IN 3L PEN INTER FUSES 250 T1 CABLE BOX 1 HOLE FOR KH025SE	144
13000			KH025ZA05 KH026CB	CONNECTING LINKS SHIELD	144
13940	BLANKING PLATES, SET OF 10X5 MODULES	126		CONNECTING LINKS SHIELD	145
30000	FORR KAEDRA		KH028CB86NS	CONNECTING LINKS TAP OFF BOX SB NS1000	146
33596	ARC-CHUTE COVER, FIXED NS, 3P	77	KH036CB	CONNECTING LINKS SHIELD	145
33597	ARC-CHUTE COVER, FIXED NS, 4P	77	KH036CB311571	CONNECTING LINKS SHIELD	145
40000			KH038CB86NS	CONNECTING LINKS TAP OFF BOX SB NS1000	146
17335	ARC-CHUTE COVER, FIXED NT, 3P	77	KH040SD85	KH BOX PLUG IN 3L PEN SECT MULLER 400 T2	142
17336	ARC-CHUTE COVER, FIXED NT, 4P	77	KH040SD9502	KH BOX PLUG IN 3L PEN SECT PEHLA 400 T2	
2000			KH040SE341 KH040SE351	KH BOX PLUG IN 3L N PE INTER FUSES 400 T2 KH BOX PLUG IN 3L PEN INTER FUSES 400 T2	144 144
30000			KH040SE351 KH040ZA05	CABLE BOX 1 HOLE FOR KH040SE	144
7800	DBA 115 INSTALLATION KIT FOR KT BBT 800/4000A TDC	78	KH040ZA06	CABLE BOX 2 HOLES FOR KH040SE	144
37801	DBA 115 INSTALLATION KIT FOR KT BBT 800/3200A RC	78	KH040ZA07 KH046CB	CONNECTING BOX FOR KH040SD9502 CONNECTING LINKS SHIELD	143 145
7808	SPECIAL TIGHTENING WRENCH BIT	78	KH046CB311571	CONNECTING LINKS SHIELD	145
37811	DBA 115 CONNECTING BLOCK FOR KT BBT 800/1600A 3P TDC	78	KH048CB86NS	CONNECTING LINKS TAP OFF BOX SB NS1000	146
7812	DBA 115 CONNECTING BLOCK FOR KT BBT 800/1600A 4P TDC	78	KH056CB	CONNECTING LINKS SHIELD	145
37813		78	KH056CB311571 KH058CB86NS	CANAL ELEC EQUIP ECLIS COF 1000A CONNECTING LINKS TAP OFF BOX SB	145 146
37814	DBA 115 CONNECTING BLOCK FOR KT BBT	78	KH063SB131	NS1000 KH FIXED BOX 3L PE FUS 630 T3 N1	145
37815	2000/2500A 4P TDC DBA 115 CONNECTING BLOCK FOR KT BBT	78	KH063SB132	KH FIXED BOX 3L PE FUS 630 T3 N2	145
71013	3200A 3P TDC	10	KH063SB141	KH FIXED BOX 3L N PE FUS 630 T3 N1	145
87816	DBA 115 CONNECTING BLOCK FOR KT BBT	78	KH063SB142	KH FIXED BOX 3L N PE FUS 630 T3 N2	145
	3200A 4P TDC		KH063SD14	KH BOX PLUG IN 3L N PE FUSES 630 T3	140

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
	KH BOX PLUG IN 3L PEN FUSES 630 T3	140	KSB400SE4	TAP-OFF UNIT 400 A FUSE T2	120, 122
KH063SD541	KH BOX PLUG IN 3L N PE NSX630	139	KSB400SE5	TAP-OFF UNIT 400 A FUSE T2	120, 122
	KH BOX PLUG IN 3L N PE NSX630	139	KSB400ZC1	TAP-OFF UNIT DOOR MICROSWITCH 400 A	126
	KH BOX PLUG IN 3L PEN NSX630	139	I/TA COOO		
KH063SD552 KH063SD85	KH BOX PLUG IN 3L PEN NSX630 KH BOX PLUG IN 3L PEN SECT MULLER 630 T3	139 142	KTA0800	I/T OVOCO AL EL AT ED CENTRE :	70
	KH BOX PLUG IN 3L PEN SECT PEHLA 630 T3		KTA0800CP31	KT 3X800AL FLAT EDGEWISE N1	70
	KH BOX PLUG IN 3L N PE INTER FUSES 630 T3	144	KTA0800CP32	KT 3X800AL FLAT EDGEWISE N2	70 70
	KH BOX PLUG IN 3L PEN INTER FUSES 630 T3	144	KTA0800CP33 KTA0800CP34	KT 3X800AL FLAT EDGEWISE N3 KT 3X800AL FLAT EDGEWISE N4	70
	EXTENDED REMOTE HANDLE FOR TOU	144	KTA0800CP41	KT 4X800AL FLAT EDGEWISE N4 KT 4X800AL FLAT EDGEWISE N1	70
	FUPACT KH0XXSE3X1		KTA0800CP42	KT 4X800AL FLAT EDGEWISE N2	70
KH063ZA05	CABLE BOX 1 HOLE FOR KH063SE	144	KTA0800CP43	KT 4X800AL FLAT EDGEWISE N3	70
KH063ZA06	CABLE BOX 2 HOLES FOR KH063SE	144	KTA0800CP44	KT 4X800AL FLAT EDGEWISE N4	70
	CONNECTING PLATE FOR KH063SD9502	143	KTA0800CP51	KT 5X800AL FLAT EDGEWISE N1	70
KH063ZA10	CABLE GLAND 185 A 240 MM2	144	KTA0800CP52	KT 5X800AL FLAT EDGEWISE N2	70
KH086SB131	KH FIXED BOX 3L PE FUS T4 1000 N1	145	KTA0800CP53	KT 5X800AL FLAT EDGEWISE N3	70
	KH FIXED BOX 3L PE FUS T4 1000 N2	145	KTA0800CP54	KT 5X800AL FLAT EDGEWISE N4	70
KH086SB141	KH FIXED BOX 3L N PE FUS 1000 T4 N1	145	KTA0800CP71	KT 5X800AL FLAT EDGEWISE N1	70
	KH FIXED BOX 3L N PE FUS 1000 T4 N2 KH FIXED BOX 3L PE NS1000 N1	145 146	KTA0800CP72	KT 5X800AL FLAT EDGEWISE N2	70
KH086SB5311	KH FIXED BOX 3L PE NS1000 N1 KH FIXED BOX 3L PE NS1000 N2	146	KTA0800CP73	KT 5X800AL FLAT EDGEWISE N3	70
KH086SB5411	KH FIXED BOX 3L N PE NS1000 T4 N1	146	KTA0800CP74	KT 5X800AL FLAT EDGEWISE N4	70
	KH FIXED BOX 3L N PE NS1000 T4 N1	146	KTA0800DB310	KT 3X800AL EXPANSION UNIT	58
	MED BOX GENT ENGINEED 17142	. 13	KTA0800DB410	KT 4X800AL EXPANSION UNIT	58
KHB			KTA0800DB510	KT 5X800AL EXPANSION UNIT	58
	KH PLUGIN 630A FUS 3LN ADV L	141	KTA0800DB710	KT 5X800AL EXPANSION UNIT	58
	KH PLUGIN 630A FUS 3LN ADV R	141	KTA0800EB320 KTA0800EB340	KT 3X800AL BOLT ON LENGTH 2M KT 3X800AL BOLT ON LENGTH 4M	54 54
	KH PLUGIN 630A FUS 3LPEN ADV L	141	KTA0800EB420	KT 4X800AL BOLT ON LENGTH 4M	54
	KH PLUGIN 630A FUS 3LPEN ADV R	141	KTA0800EB440	KT 4X800AL BOLT ON LENGTH 4M	54
			KTA0800EB520	KT 5X800AL BOLT ON LENGTH 2M	54
KSB			KTA0800EB540	KT 5X800AL BOLT ON LENGTH 4M	54
KSB25SD4	TAP-OFF UNIT 25 A FUSE E27	121	KTA0800EB720	KT 5X800AL BOLT ON LENGTH 2M	54
	TAP-OFF UNIT 25 A FUSE E27	121	KTA0800EB740	KT 5X800AL BOLT ON LENGTH 4M	54
	CONNECTOR 32 A FUSE BS88A1	125		KT 1X800AL PLUG-IN LENGTH 2M	52
KSB50SF4	TAP-OFF UNIT 50 A FUSE 14X51	119		KT 3X800AL PLUG-IN LENGTH 2M	52
KSB50SF5	TAP-OFF UNIT 50 A FUSE 14X51	119	KTA0800ED3301	KT 1X800AL PLUG-IN LENGTH	52
KSB50SN4	TAP-OFF UNIT 50 A FUSE E18	121	KTA0800ED3302	KT 2X800AL PLUG-IN LENGTH	52
KSB50SN5	TAP-OFF UNIT 50 A FUSE E18	121	KTA0800ED3351	KT 1X800AL PLUG-IN LENGTH	52
	TAP-OFF UNIT 63 A FUSE E33	121		KT 3X800AL PLUG-IN LENGTH	52
KSB63SD5	TAP-OFF UNIT 63 A FUSE E33	121		KT 3X800AL PLUG-IN LENGTH 4M	52
KSB63SM48	TAP-OFF UNIT 63 A 8 MODULES	114		KT 1X800AL PLUG-IN LENGTH 2M	52
KSB63SM58	TAP-OFF UNIT 63 A 8 MODULES	114		KT 4X800AL PLUG-IN LENGTH 2M	52
KSB80SG4	TAP-OFF UNIT 80 A FUSE BS88A1	125		KT 1X800AL PLUG-IN LENGTH	52
	TAP OFF UNIT 100 A FUSE TOO	120, 122		KT 2X800AL PLUG-IN LENGTH	52
	TAP-OFF UNIT 100 A FUSE 700	120, 122		KT 1X800AL PLUG-IN LENGTH KT 3X800AL PLUG-IN LENGTH	52 52
	TAP-OFF UNIT 100 A FUSE 22X58 TAP-OFF UNIT 100 A FUSE 22X58	119 119		KT 4X800AL PLUG-IN LENGTH KT 4X800AL PLUG-IN LENGTH 4M	52
	TAP-OFF UNIT 100 A FUSE 22X58 TAP-OFF UNIT 100 A 12 MODULES	114		KT 1X800AL PLUG-IN LENGTH 4M KT 1X800AL PLUG-IN LENGTH 2M	52
	TAP-OFF UNIT 100 A 12 MODULES	114		KT 5X800AL PLUG-IN LENGTH 2M	52
	TAP-OFF UNIT 160 A COMPACT NS	116		KT 1X800AL PLUG-IN LENGTH	52
	TAP-OFF UNIT 160 A COMPACT NS	116		KT 2X800AL PLUG-IN LENGTH	52
	TAP-OFF UNIT 160 A FUSE T00	120, 122		KT 1X800AL PLUG-IN LENGTH	52
	TAP-OFF UNIT 160 A FUSE T00	120, 122		KT 3X800AL PLUG-IN LENGTH	52
	TAP-OFF UNIT 160 A FUSE TO	120	KTA0800ED5403	KT 5X800AL PLUG-IN LENGTH 4M	52
KSB160SF5	TAP-OFF UNIT 160 A FUSE T0	120	KTA0800ED7201	KT 1X800AL PLUG-IN LENGTH 2M	52
KSB160SG4	TAP-OFF UNIT 160 A FUSE BS88	125	KTA0800ED7203	KT 5X800AL PLUG-IN LENGTH 2M	52
KSB160SM413	TAP-OFF UNIT NG 160 A	115		KT 1X800AL PLUG-IN LENGTH	52
	TAP-OFF UNIT NG 160 A	115		KT 2X800AL PLUG-IN LENGTH	52
	TAP-OFF UNIT 250 A COMPACT NS	116		KT 1X800AL PLUG-IN LENGTH	52
	TAP-OFF UNIT 250 A COMPACT NS TRE	117		KT 3X800AL PLUG-IN LENGTH	52
	TAP-OFF UNIT 250 A COMPACT NS	116		KT 5X800AL PLUG-IN LENGTH 4M	52
	TAP-OFF UNIT 250 A COMPACT NS TRE	117	KTA0800EH320	KT 3X800AL KH PLUG-IN LENGTH 2M	55
	TAP-OFF UNIT 250 A FUSE T1	120, 122	KTA0800EH340	KT 3X800AL KH PLUG-IN LENGTH 4M	55
	TAP-OFF UNIT 250 A FUSE T1	120, 122	KTA0800EH420	KT 4X800AL KH PLUG-IN LENGTH 2M	55
	TAP-OFF UNIT 400 A COMPACT NS	116	KTA0800EH440	KT 4X800AL KH PLUG-IN LENGTH 4M	55 55
KSB400DC41RE KSB400DC5	TAP-OFF UNIT 400 A COMPACT NS TRE TAP-OFF UNIT 400 A COMPACT NS	117 116	KTA0800EH520 KTA0800EH540	KT 5X800AL KH PLUG-IN LENGTH 2M KT 5X800AL KH PLUG-IN LENGTH 4M	55 55
へいしゃいいしじつ	IAI -OI I OINII 400 A CONTACTINO	110	VIVOOODELI940	NT ONOUGHERTT LOG-IN LLINGTH 4IVI	94

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
TA0800EL32	KT 3X800AL FEED UNIT EL N2	94	KTA0800ET53E	KT 5X800AL FEEDER LENGTH	52
A0800EL33	KT 3X800AL FEED UNIT EL N3	96	KTA0800ET53F	KT 5X800AL FEEDER LENGTH	52
A0800EL34	KT 3X800AL FEED UNIT EL N4	96	KTA0800ET540	KT 5X800AL FEEDER LENGTH 4M	52
A0800EL35	KT 3X800AL FEED UNIT EL N5	97	KTA0800ET71A	KT 5X800AL FEEDER LENGTH	52
A0800EL41	KT 4X800AL FEED UNIT EL N1	94	KTA0800ET720	KT 5X800AL FEEDER LENGTH 2M	52
A0800EL42	KT 4X800AL FEED UNIT EL N2	94	KTA0800ET72B	KT 5X800AL FEEDER LENGTH	52
A0800EL43	CT 4X800AL FEED UNIT EL N3	96	KTA0800ET72C	KT 5X800AL FEEDER LENGTH	52
A0800EL44	KT 4X800AL FEED UNIT EL N4	96	KTA0800ET73D	KT 5X800AL FEEDER LENGTH	52
TA0800EL45	KT 4X800AL FEED UNIT EL N5	97	KTA0800ET73E	KT 5X800AL FEEDER LENGTH	52
TA0800EL51	KT 5X800AL FEED UNIT EL N1	94	KTA0800ET73F	KT 5X800AL FEEDER LENGTH	52
TA0800EL52	KT 5X800AL FEED UNIT EL N2	94	KTA0800ET740	KT 5X800AL FEEDER LENGTH 4M	52
	KT 5X800AL FEED UNIT EL N3	96	KTA0800FC3A	KT 3X800AL EDGEWISE ELBOW	74
	KT 5X800AL FEED UNIT EL N4	96	KTA0800FC3B	KT 3X800AL EDGEWISE ELBOW	74
	KT 5X800AL FEED UNIT EL N5	97	KTA0800FC3D	KT 3X800AL EDGEWISE ELBOW	74
	KT 5X800AL FEED UNIT EL N1	94	KTA0800FC3E	KT 3X800AL EDGEWISE ELBOW	74
	KT 5X800AL FEED UNIT EL N2	94	KTA0800FC4A	KT 4X800AL EDGEWISE ELBOW	74
	KT 5X800AL FEED UNIT EL N3	96	KTA0800FC4B	KT 4X800AL EDGEWISE ELBOW	74
	KT 5X800AL FEED UNIT EL N4	96	KTA0800FC4D	KT 4X800AL EDGEWISE ELBOW	74
	KT 5X800AL FEED UNIT EL N5	97	KTA0800FC4E	KT 4X800AL EDGEWISE ELBOW	74
	KT 3X800AL FEED UNIT ER N1	80	KTA0800FC5A	KT 5X800AL EDGEWISE ELBOW	74
	KT 3X800AL FEED UNIT ER N2	80	KTA0800FC5B	KT 5X800AL EDGEWISE ELBOW	74
	KT 3X800AL FEED UNIT ER N3	81	KTA0800FC5D	KT 5X800AL EDGEWISE ELBOW	74
	KT 3X800AL FEED UNIT ER N4	81	KTA0800FC5E	KT 5X800AL EDGEWISE ELBOW	74
	KT 3X800AL FEED UNIT ER N5	82	KTA0800FC7A	KT 5X800AL EDGEWISE ELBOW	74
	KT 3X800AL FEED UNIT ER N6	82	KTA0800FC7B	KT 5X800AL EDGEWISE ELBOW	74
A0800ER37	KT 3X800AL FEED UNIT ER N7	86	KTA0800FC7D	KT 5X800AL EDGEWISE ELBOW	74
TA0800ER41	KT 4X800AL FEED UNIT ER N1	80	KTA0800FC7E	KT 5X800AL EDGEWISE ELBOW	74
TA0800ER42	KT 4X800AL FEED UNIT ER N2	80	KTA0800FP3A1	KT 3X800AL FLAT ELBOW N1 FIRE	73
A0800ER43	KT 4X800AL FEED UNIT ER N3	81	KTA0800FP3A2	KT 3X800AL FLAT ELBOW N2 FIRE	73
A0800ER44	KT 4X800AL FEED UNIT ER N4	81	KTA0800FP3B1	KT 3X800AL FLAT ELBOW N1 FIRE	73
A0800ER45	KT 4X800AL FEED UNIT ER N5	82	KTA0800FP3B2	KT 3X800AL FLAT ELBOW N2 FIRE	73
TA0800ER46	KT 4X800AL FEED UNIT ER N6	82	KTA0800FP3D1	KT 3X800AL FLAT ELBOW N1 FIRE	73
TA0800ER47	KT 4X800AL FEED UNIT ER N7	86	KTA0800FP3D2	KT 3X800AL FLAT ELBOW N2 FIRE	73
TA0800ER51	KT 5X800AL FEED UNIT ER N1	80	KTA0800FP3E1	KT 3X800AL FLAT ELBOW N1 FIRE	73
	KT 5X800AL FEED UNIT ER N2	80	KTA0800FP3E2	KT 3X800AL FLAT ELBOW N2 FIRE	73
	KT 5X800AL FEED UNIT ER N3	81	KTA0800FP4A1	KT 4X800AL FLAT ELBOW N1 FIRE	73
	KT 5X800AL FEED UNIT ER N4	81	KTA0800FP4A2	KT 4X800AL FLAT ELBOW N2 FIRE	73
	KT 5X800AL FEED UNIT ER N5	82	KTA0800FP4B1	KT 4X800AL FLAT ELBOW N1 FIRE	73
	KT 5X800AL FEED UNIT ER N6	82	KTA0800FP4B2	KT 4X800AL FLAT ELBOW N2 FIRE	73
	KT 5X800AL FEED UNIT ER N7	86	KTA0800FP4D1	KT 4X800AL FLAT ELBOW N1 FIRE	73
	KT 5X800AL FEED UNIT ER N1	80	KTA0800FP4D1	KT 4X800AL FLAT ELBOW NT FIRE	73
	KT 5X800AL FEED UNIT ER N2	80	KTA0800FP4E1	KT 4X800AL FLAT ELBOW N2 FIRE	73
	KT 5X800AL FEED UNIT ER N3	81	KTA0800FP4E2	KT 4X800AL FLAT ELBOW N2 FIRE	73
	KT 5X800AL FEED UNIT ER N4	81	KTA0800FP5A1	KT 5X800AL FLAT ELBOW N1 FIRE	73
	KT 5X800AL FEED UNIT ER N5	82	KTA0800FP5A2	KT 5X800AL FLAT ELBOW N2 FIRE	73
	KT 5X800AL FEED UNIT ER N6	82	KTA0800FP5B1	KT 5X800AL FLAT ELBOW N1 FIRE	73
	KT 5X800AL FEED UNIT ER N7	86	KTA0800FP5B2	KT 5X800AL FLAT ELBOW N2 FIRE	73
	KT 3X800AL FEEDER LENGTH	52	KTA0800FP5D1	KT 5X800AL FLAT ELBOW N1 FIRE	73
	KT 3X800AL FEEDER LENGTH 2M	52	KTA0800FP5D2	KT 5X800AL FLAT ELBOW N2 FIRE	73
	KT 3X800AL FEEDER LENGTH	52	KTA0800FP5E1	KT 5X800AL FLAT ELBOW N1 FIRE	73
	KT 3X800AL FEEDER LENGTH	52	KTA0800FP5E2	KT 5X800AL FLAT ELBOW N2 FIRE	73
	KT 3X800AL FEEDER LENGTH	52	KTA0800FP7A1	KT 5X800AL FLAT ELBOW N1 FIRE	73
TA0800ET33E	KT 3X800AL FEEDER LENGTH	52	KTA0800FP7A2	KT 5X800AL FLAT ELBOW N2 FIRE	73
A0800ET33F	KT 3X800AL FEEDER LENGTH	52	KTA0800FP7B1	KT 5X800AL FLAT ELBOW N1 FIRE	73
A0800ET340	KT 3X800AL FEEDER LENGTH 4M	52	KTA0800FP7B2	KT 5X800AL FLAT ELBOW N2 FIRE	73
A0800ET41A	KT 4X800AL FEEDER LENGTH	52	KTA0800FP7D1	KT 5X800AL FLAT ELBOW N1 FIRE	73
	KT 4X800AL FEEDER LENGTH 2M	52	KTA0800FP7D2	KT 5X800AL FLAT ELBOW N2 FIRE	73
	KT 4X800AL FEEDER LENGTH	52	KTA0800FP7E1	KT 5X800AL FLAT ELBOW N1 FIRE	73
	KT 4X800AL FEEDER LENGTH	52	KTA0800FP7E2	KT 5X800AL FLAT ELBOW N2 FIRE	73
	KT 4X800AL FEEDER LENGTH	52	KTA0800FT31A	KT 3X800AL FEEDER LENGTH FIRE	72
	KT 4X800AL FEEDER LENGTH	52	KTA0800FT320	KT 3X800AL FEEDER LENGTH FIRE 2M	72
	KT 4X800AL FEEDER LENGTH	52	KTA0800FT32B	KT 3X800AL FEEDER LENGTH FIRE	72
	KT 4X800AL FEEDER LENGTH 4M	52	KTA0800FT32C	KT 3X800AL FEEDER LENGTH FIRE	72
	KT 5X800AL FEEDER LENGTH	52	KTA0800FT33D	KT 3X800AL FEEDER LENGTH FIRE	72
	KT 5X800AL FEEDER LENGTH 2M	52	KTA0800FT33E	KT 3X800AL FEEDER LENGTH FIRE	72
	KT 5X800AL FEEDER LENGTH	52	KTA0800FT33F	KT 3X800AL FEEDER LENGTH FIRE	72
	KT 5X800AL FEEDER LENGTH	52	KTA0800FT340	KT 3X800AL FEEDER LENGTH FIRE 4M	72
TA0800ET53D	KT 5X800AL FEEDER LENGTH	52	KTA0800FT41A	KT 4X800AL FEEDER LENGTH FIRE	72

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
KTA0800FT420	KT 4X800AL FEEDER LENGTH FIRE 2M	72	KTA0800LP5E2	KT 5X800AL FLAT ELBOW N2	62
KTA0800FT42B	KT 4X800AL FEEDER LENGTH FIRE	72	KTA0800LP7A1	KT 5X800AL FLAT ELBOW N1	62
KTA0800FT42C	KT 4X800AL FEEDER LENGTH FIRE	72	KTA0800LP7A2	KT 5X800AL FLAT ELBOW N2	62
KTA0800FT43D	KT 4X800AL FEEDER LENGTH FIRE	72	KTA0800LP7B1	KT 5X800AL FLAT ELBOW N1	62
KTA0800FT43E	KT 4X800AL FEEDER LENGTH FIRE	72	KTA0800LP7B2	KT 5X800AL FLAT ELBOW N2	62
KTA0800FT43F	KT 4X800AL FEEDER LENGTH FIRE	72	KTA0800LP7C1	KT 5X800AL FLAT ELBOW N1	63
KTA0800FT440	KT 4X800AL FEEDER LENGTH FIRE 4M	72	KTA0800LP7C2	KT 5X800AL FLAT ELBOW N2	63
KTA0800FT51A	KT 5X800AL FEEDER LENGTH FIRE	72	KTA0800LP7D1	KT 5X800AL FLAT ELBOW N1	62
KTA0800FT520	KT 5X800AL FEEDER LENGTH FIRE 2M	72	KTA0800LP7D2	KT 5X800AL FLAT ELBOW N2	62
KTA0800FT52B	KT 5X800AL FEEDER LENGTH FIRE	72	KTA0800LP7E1	KT 5X800AL FLAT ELBOW N1	62
KTA0800FT52C	KT 5X800AL FEEDER LENGTH FIRE	72 72	KTA0800LP7E2	KT 5X800AL FLAT ELBOW N2 KT 3X800AL TEE ON EDGE	62 67
KTA0800FT53D KTA0800FT53E	KT 5X800AL FEEDER LENGTH FIRE KT 5X800AL FEEDER LENGTH FIRE	72	KTA0800TC3 KTA0800TC4	KT 4X800AL TEE ON EDGE	67
KTA0800FT53F	KT 5X800AL FEEDER LENGTH FIRE	72	KTA0800TC5	KT 5X800AL TEE ON EDGE	67
KTA0800FT540	KT 5X800AL FEEDER LENGTH FIRE 4M	72	KTA0800TC7	KT 5X800AL TEE ON EDGE	67
KTA0800FT71A	KT 5X800AL FEEDER LENGTH FIRE	72	KTA0800TN410	KT 4X800AL NEUTRAL PERMUTA	58
KTA0800FT720	KT 5X800AL FEEDER LENGTH FIRE 2M	72	KTA0800TN610	KT 4X800AL NEUTRAL PERMUTA	58
KTA0800FT72B	KT 5X800AL FEEDER LENGTH FIRE	72	KTA0800TP410	KT 4X800AL PHASES PERMUTA	58
KTA0800FT72C	KT 5X800AL FEEDER LENGTH FIRE	72	KTA0800TP610	KT 4X800AL PHASES PERMUTA	58
KTA0800FT73D	KT 5X800AL FEEDER LENGTH FIRE	72	KTA0800YA3	KT 3X800AL JUNCTION BLOC	60
KTA0800FT73E	KT 5X800AL FEEDER LENGTH FIRE	72	KTA0800YA4	KT 4X800AL JUNCTION BLOC	60
KTA0800FT73F	KT 5X800AL FEEDER LENGTH FIRE	72	KTA0800YA5	KT 5X800AL JUNCTION BLOC	60
KTA0800FT740	KT 5X800AL FEEDER LENGTH FIRE 4M	72	KTA0800YA6	KT 4X800AL JUNCTION BLOC	60
KTA0800LC3A	KT 3X800AL EDGEWISE ELBOW	63	KTA0800YA7	KT 5X800AL JUNCTION BLOC	60
KTA0800LC3B	KT 3X800AL EDGEWISE ELBOW	63	KTA0800ZC31	KT 3X800AL EDGEWISE ZED N1	68
KTA0800LC3D	KT 3X800AL EDGEWISE ELBOW	63	KTA0800ZC32	KT 3X800AL EDGEWISE ZED N2	68
KTA0800LC3E	KT 3X800AL EDGEWISE ELBOW	63	KTA0800ZC41	KT 4X800AL EDGEWISE ZED N1	68 68
KTA0800LC4A KTA0800LC4B	KT 4X800AL EDGEWISE ELBOW KT 4X800AL EDGEWISE ELBOW	63 63	KTA0800ZC42 KTA0800ZC51	KT 4X800AL EDGEWISE ZED N2 KT 5X800AL EDGEWISE ZED N1	68
KTA0800LC4D	KT 4X800AL EDGEWISE ELBOW	63	KTA0800ZC52	KT 5X800AL EDGEWISE ZED N1 KT 5X800AL EDGEWISE ZED N2	68
KTA0800LC4E	KT 4X800AL EDGEWISE ELBOW	63	KTA0800ZC71	KT 5X800AL EDGEWISE ZED N1	68
KTA0800LC5A	KT 5X800AL EDGEWISE ELBOW	63	KTA0800ZC72	KT 5X800AL EDGEWISE ZED N2	68
KTA0800LC5B	KT 5X800AL EDGEWISE ELBOW	63	KTA0800ZP3	KT 3X800AL ZED ON FLAT	68
KTA0800LC5D	KT 5X800AL EDGEWISE ELBOW	63	KTA0800ZP4	KT 4X800AL ZED ON FLAT	68
KTA0800LC5E	KT 5X800AL EDGEWISE ELBOW	63	KTA0800ZP5	KT 5X800AL ZED ON FLAT	68
KTA0800LC7A	KT 5X800AL EDGEWISE ELBOW	63	KTA0800ZP7	KT 5X800AL ZED ON FLAT	68
KTA0800LC7B	KT 5X800AL EDGEWISE ELBOW	63			
KTA0800LC7D	KT 5X800AL EDGEWISE ELBOW	63	KTA1000		
KTA0800LC7E	KT 5X800AL EDGEWISE ELBOW	63	KTA1000CP31	KT 3X1000AL FLAT EDGEWISE N1	70
KTA0800LP3A1	KT 3X800AL FLAT ELBOW N1	62	KTA1000CP32	KT 3X1000AL FLAT EDGEWISE N2	70
KTA0800LP3A2	KT 3X800AL FLAT ELBOW N2	62	KTA1000CP33	KT 3X1000AL FLAT EDGEWISE N3	70
KTA0800LP3B1 KTA0800LP3B2	KT 3X800AL FLAT ELBOW N1 KT 3X800AL FLAT ELBOW N2	62 62	KTA1000CP34	KT 3X1000AL FLAT EDGEWISE N4	70
KTA0800LP3C1	KT 3X800AL FLAT ELBOW N2	63	KTA1000CP41	KT 4X1000AL FLAT EDGEWISE N1	70
KTA0800LP3C2	KT 3X800AL FLAT ELBOW N2	63	KTA1000CP42	KT 4X1000AL FLAT EDGEWISE N2	70
KTA0800LP3D1	KT 3X800AL FLAT ELBOW N1	62	KTA1000CP43 KTA1000CP44	KT 4X1000AL FLAT EDGEWISE N3 KT 4X1000AL FLAT EDGEWISE N4	70 70
KTA0800LP3D2	KT 3X800AL FLAT ELBOW N2	62	KTA1000CP51	KT 5X1000AL FLAT EDGEWISE N1	70
KTA0800LP3E1	KT 3X800AL FLAT ELBOW N1	62	KTA1000CP51	KT 5X1000AL FLAT EDGEWISE N1 KT 5X1000AL FLAT EDGEWISE N2	70
KTA0800LP3E2	KT 3X800AL FLAT ELBOW N2	62	KTA1000CP53	KT 5X1000AL FLAT EDGEWISE N3	70
KTA0800LP4A1	KT 4X800AL FLAT ELBOW N1	62	KTA1000CP54	KT 5X1000AL FLAT EDGEWISE N4	70
KTA0800LP4A2	KT 4X800AL FLAT ELBOW N2	62	KTA1000CP71	KT 5X1000AL FLAT EDGEWISE N1	70
KTA0800LP4B1	KT 4X800AL FLAT ELBOW N1	62	KTA1000CP72	KT 5X1000AL FLAT EDGEWISE N2	70
KTA0800LP4B2		62	KTA1000CP73	KT 5X1000AL FLAT EDGEWISE N3	70
KTA0800LP4C1	KT 4X800AL FLAT ELBOW N1	63	KTA1000CP74	KT 5X1000AL FLAT EDGEWISE N4	70
KTA0800LP4C2		63	KTA1000DB310	KT 3X1000AL EXPANSION UNIT	58
KTA0800LP4D1	KT 4X800AL FLAT ELBOW N1	62	KTA1000DB410	KT 4X1000AL EXPANSION UNIT	58
KTA0800LP4D2	KT 4X800AL FLAT ELBOW N2	62	KTA1000DB510	KT 5X1000AL EXPANSION UNIT	58
KTA0800LP4E1 KTA0800LP4E2	KT 4X800AL FLAT ELBOW N1 KT 4X800AL FLAT ELBOW N2	62 62	KTA1000DB710	KT 5X1000AL EXPANSION UNIT	58
KTA0800LP4E2	KT 5X800AL FLAT ELBOW N2	62	KTA1000EB320	KT 3X1000AL BOLT ON LENGTH 2M	54
KTA0800LP5A2	KT 5X800AL FLAT ELBOW N2	62	KTA1000EB340	KT 3X1000AL BOLT ON LENGTH 4M	54
KTA0800LP5B1	KT 5X800AL FLAT ELBOW N1	62	KTA1000EB420	KT 4X1000AL BOLT ON LENGTH 4M	54
KTA0800LP5B2	KT 5X800AL FLAT ELBOW N2	62	KTA1000EB440 KTA1000EB520	KT 4X1000AL BOLT ON LENGTH 4M KT 5X1000AL BOLT ON LENGTH 2M	54 54
KTA0800LP5C1	KT 5X800AL FLAT ELBOW N1	63	KTA1000EB520	KT 5X1000AL BOLT ON LENGTH 2M KT 5X1000AL BOLT ON LENGTH 4M	54
KTA0800LP5C2	KT 5X800AL FLAT ELBOW N2	63	KTA1000EB340	KT 5X1000AL BOLT ON LENGTH 2M	54
	KT 5X800AL FLAT ELBOW N1	62	KTA1000EB740	KT 5X1000AL BOLT ON LENGTH 4M	54
KTA0800LP5D1					- •
KTA0800LP5D1	KT 5X800AL FLAT ELBOW N2	62	KTA1000ED3201	KT 1X1000AL PLUG-IN LENGTH 2M	52

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
TA1000ED3301	KT 1X1000AL PLUG-IN LENGTH	52	KTA1000ER53	KT 5X1000AL FEED UNIT ER N3	81
TA1000ED3302	KT 2X1000AL PLUG-IN LENGTH	52	KTA1000ER54	KT 5X1000AL FEED UNIT ER N4	81
A1000ED3351	KT 1X1000AL PLUG-IN LENGTH	52	KTA1000ER55	KT 5X1000AL FEED UNIT ER N5	82
A1000ED3353	KT 3X1000AL PLUG-IN LENGTH	52	KTA1000ER56	KT 5X1000AL FEED UNIT ER N6	82
A1000ED3403	KT 3X1000AL PLUG-IN LENGTH 4M	52	KTA1000ER57	KT 5X1000AL FEED UNIT ER N7	86
ΓA1000ED4201	KT 1X1000AL PLUG-IN LENGTH 2M	52	KTA1000ER71	KT 5X1000AL FEED UNIT ER N1	80
ΓA1000ED4203	KT 4X1000AL PLUG-IN LENGTH 2M	52	KTA1000ER72	KT 5X1000AL FEED UNIT ER N2	80
TA1000ED4301	KT 1X1000AL PLUG-IN LENGTH	52	KTA1000ER73	KT 5X1000AL FEED UNIT ER N3	81
TA1000ED4302	KT 2X1000AL PLUG-IN LENGTH	52	KTA1000ER74	KT 5X1000AL FEED UNIT ER N4	81
TA1000ED4351	KT 1X1000AL PLUG-IN LENGTH	52	KTA1000ER75	KT 5X1000AL FEED UNIT ER N5	82
TA1000ED4353	KT 3X1000AL PLUG-IN LENGTH	52	KTA1000ER76	KT 5X1000AL FEED UNIT ER N6	82
	KT 4X1000AL PLUG-IN LENGTH 4M	52	KTA1000ER77	KT 5X1000AL FEED UNIT ER N7	86
	KT 1X1000AL PLUG-IN LENGTH 2M	52	KTA1000ET31A	KT 3X1000AL FEEDER LENGTH	52
	KT 5X1000AL PLUG-IN LENGTH 2M	52	KTA1000ET320	KT 3X1000AL FEEDER LENGTH 2M	52
	KT 1X1000AL PLUG-IN LENGTH	52	KTA1000ET32B	KT 3X1000AL FEEDER LENGTH	52
	KT 2X1000AL PLUG-IN LENGTH	52	KTA1000ET32C	KT 3X1000AL FEEDER LENGTH	52
	KT 1X1000AL PLUG-IN LENGTH	52	KTA1000ET33E	KT 3X1000AL FEEDER LENGTH	52
	KT 3X1000AL PLUG-IN LENGTH	52	KTA1000ET33F	KT 3X1000AL FEEDER LENGTH	52
	KT 5X1000AL PLUG-IN LENGTH 4M	52	KTA1000ET33D	KT 3X1000AL FEEDER LENGTH	52
	KT 1X1000AL PLUG-IN LENGTH 2M	52	KTA1000ET340	KT 3X1000AL FEEDER LENGTH 4M	52
	KT 5X1000AL PLUG-IN LENGTH 2M	52	KTA1000ET41A	KT 4X1000AL FEEDER LENGTH	52
	KT 1X1000AL PLUG-IN LENGTH	52	KTA1000ET420	KT 4X1000AL FEEDER LENGTH 2M	52
	KT 2X1000AL PLUG-IN LENGTH	52	KTA1000ET42B	KT 4X1000AL FEEDER LENGTH	52
	KT 1X1000AL PLUG-IN LENGTH	52	KTA1000ET42C	KT 4X1000AL FEEDER LENGTH	52
	KT 3X1000AL PLUG-IN LENGTH	52	KTA1000ET43D	KT 4X1000AL FEEDER LENGTH	52
A1000ED7403	KT 5X1000AL PLUG-IN LENGTH 4M	52	KTA1000ET43E	KT 4X1000AL FEEDER LENGTH	52
A1000EH320	KT 3X1000AL KH PLUG-IN LENGTH 2M	55	KTA1000ET43F	KT 4X1000AL FEEDER LENGTH	52
A1000EH340	KT 3X1000AL KH PLUG-IN LENGTH 4M	55	KTA1000ET440	KT 4X1000AL FEEDER LENGTH 4M	52
A1000EH420	KT 4X1000AL KH PLUG-IN LENGTH 2M	55	KTA1000ET51A	KT 5X1000AL FEEDER LENGTH	52
A1000EH440	KT 4X1000AL KH PLUG-IN LENGTH 4M	55	KTA1000ET520	KT 5X1000AL FEEDER LENGTH 2M	52
A1000EH520	5X1000AL KH PLUG-IN LENGTH 2M	55	KTA1000ET52B	KT 5X1000AL FEEDER LENGTH	52
A1000EH540	5X1000AL KH PLUG-IN LENGTH 4M	55	KTA1000ET52C	KT 5X1000AL FEEDER LENGTH	52
A1000EL31	KT 3X1000AL FEED UNIT EL N1	94	KTA1000ET53D	KT 5X1000AL FEEDER LENGTH	52
A1000EL32	KT 3X1000AL FEED UNIT EL N2	94	KTA1000ET53E	KT 5X1000AL FEEDER LENGTH	52
A1000EL33	KT 3X1000AL FEED UNIT EL N3	96	KTA1000ET53F	KT 5X1000AL FEEDER LENGTH	52
A1000EL34	KT 3X1000AL FEED UNIT EL N4	96	KTA1000ET540	KT 5X1000AL FEEDER LENGTH 4M	52
A1000EL34	KT 3X1000AL FEED UNIT EL N5	97	KTA1000ET71A	KT 5X1000ALT ELDER LENGTH	52
					52
A1000EL41	KT 4X1000AL FEED UNIT EL NI	94	KTA1000ET720	KT 5X1000AL FEEDER LENGTH 2M	
TA1000EL42	KT 4X1000AL FEED UNIT EL N2	94	KTA1000ET72B	KT 5X1000AL FEEDER LENGTH	52
A1000EL43	KT 4X1000AL FEED UNIT EL N3	96	KTA1000ET72C	KT 5X1000AL FEEDER LENGTH	52
TA1000EL44	KT 4X1000AL FEED UNIT EL N4	96	KTA1000ET73D	KT 5X1000AL FEEDER LENGTH	52
TA1000EL45	KT 4X1000AL FEED UNIT EL N5	97	KTA1000ET73E	KT 5X1000AL FEEDER LENGTH	52
A1000EL51	KT 5X1000AL FEED UNIT EL N1	94	KTA1000ET73F	KT 5X1000AL FEEDER LENGTH	52
A1000EL52	KT 5X1000AL FEED UNIT EL N2	94	KTA1000ET740	KT 5X1000AL FEEDER LENGTH 4M	52
TA1000EL53	KT 5X1000AL FEED UNIT EL N3	96	KTA1000FC3A	KT 3X1000AL EDGEWISE ELBOW	74
ΓA1000EL54	KT 5X1000AL FEED UNIT EL N4	96	KTA1000FC3B	KT 3X1000AL EDGEWISE ELBOW	74
TA1000EL55	KT 5X1000AL FEED UNIT EL N5	97	KTA1000FC3D	KT 3X1000AL EDGEWISE ELBOW	74
TA1000EL71	KT 5X1000AL FEED UNIT EL N1	94	KTA1000FC3E	KT 3X1000AL EDGEWISE ELBOW	74
TA1000EL72	KT 5X1000AL FEED UNIT EL N2	94	KTA1000FC4A	KT 4X1000AL EDGEWISE ELBOW	74
TA1000EL73	KT 5X1000AL FEED UNIT EL N3	96	KTA1000FC4B	KT 4X1000AL EDGEWISE ELBOW	74
TA1000EL74	KT 5X1000AL FEED UNIT EL N4	96	KTA1000FC4D	KT 4X1000AL EDGEWISE ELBOW	74
A1000EL75	KT 5X1000AL FEED UNIT EL N5	97	KTA1000FC4E	KT 4X1000AL EDGEWISE ELBOW	74
A1000ER31	KT 3X1000AL FEED UNIT ER N1	80	KTA1000FC5A	KT 5X1000AL EDGEWISE ELBOW	74
A1000ER32	KT 3X1000AL FEED UNIT ER N2	80	KTA1000FC5B	KT 5X1000AL EDGEWISE ELBOW	74
A1000ER32	KT 3X1000AL FEED UNIT ER N3	81	KTA1000FC5D	KT 5X1000AL EDGEWISE ELBOW	74
A1000ER34	KT 3X1000AL FEED UNIT ER N4	81	KTA1000FC5E	KT 5X1000AL EDGEWISE ELBOW	74
A1000ER34	KT 3X1000AL FEED UNIT ER N5	82	KTA1000FC5E	KT 5X1000AL EDGEWISE ELBOW	74
			KTA1000FC7A		
A1000ER36	KT 3X1000AL FEED UNIT ER N6	82		KT 5X1000AL EDGEWISE ELBOW	74
A1000ER37	KT 3X1000AL FEED UNIT ER N7	86	KTA1000FC7D	KT 5X1000AL EDGEWISE ELBOW	74
A1000ER41	KT 4X1000AL FEED UNIT ER N1	80	KTA1000FC7E	KT 5X1000AL EDGEWISE ELBOW	74
A1000ER42	KT 4X1000AL FEED UNIT ER N2	80	KTA1000FP3A1	KT 3X1000AL FLAT ELBOW N1 FIRE	73
A1000ER43	KT 4X1000AL FEED UNIT ER N3	81	KTA1000FP3A2	KT 3X1000AL FLAT ELBOW N2 FIRE	73
TA1000ER44	KT 4X1000AL FEED UNIT ER N4	81	KTA1000FP3B1	KT 3X1000AL FLAT ELBOW N1 FIRE	73
ΓA1000ER45	KT 4X1000AL FEED UNIT ER N5	82	KTA1000FP3B2	KT 3X1000AL FLAT ELBOW N2 FIRE	73
ΓA1000ER46	KT 4X1000AL FEED UNIT ER N6	82	KTA1000FP3D1	KT 3X1000AL FLAT ELBOW N1 FIRE	73
TA1000ER47	KT 4X1000AL FEED UNIT ER N7	86	KTA1000FP3D2	KT 3X1000AL FLAT ELBOW N2 FIRE	73
TA1000ER51	KT 5X1000AL FEED UNIT ER N1	80	KTA1000FP3E1	KT 3X1000AL FLAT ELBOW N1 FIRE	73
	KT 5X1000AL FEED UNIT ER N2	80	KTA1000FP3E2	KT 3X1000AL FLAT ELBOW N2 FIRE	73

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
KTA1000FP4A1	KT 4X1000AL FLAT ELBOW N1 FIRE	73	KTA1000LC7A	KT 5X1000AL EDGEWISE ELBOW	63
KTA1000FP4A1	KT 4X1000AL FLAT ELBOW NT FIRE	73	KTA1000LC7A	KT 5X1000AL EDGEWISE ELBOW	63
KTA1000FP4A2	KT 4X1000AL FLAT ELBOW N2 FIRE	73	KTA1000LC7B	KT 5X1000AL EDGEWISE ELBOW	63
	KT 4X1000AL FLAT ELBOW NT FIRE	73	KTA1000LC7B	KT 5X1000AL EDGEWISE ELBOW	63
KTA1000FP4B2 KTA1000FP4D1		73	KTA1000LC7E	KT 3X1000AL EDGEWISE ELBOW	62
	KT 4X1000AL FLAT ELBOW N1 FIRE				
KTA1000FP4D2	KT 4X1000AL FLAT ELBOW N2 FIRE	73	KTA1000LP3A2	KT 3X1000AL FLAT ELBOW N2	62 62
KTA1000FP4E1	KT 4X1000AL FLAT ELBOW N1 FIRE	73	KTA1000LP3B1	KT 3X1000AL FLAT ELBOW N1	62
KTA1000FP4E2	KT 4X1000AL FLAT ELBOW N2 FIRE	73	KTA1000LP3B2	KT 3X1000AL FLAT ELBOW N2	
KTA1000FP5A1	KT 5X1000AL FLAT ELBOW N1 FIRE	73	KTA1000LP3C1	KT 3X1000AL FLAT ELBOW N1	63
KTA1000FP5A2	KT 5X1000AL FLAT ELBOW N2 FIRE	73	KTA1000LP3C2	KT 3X1000AL FLAT ELBOW N2	63
KTA1000FP5B1	KT 5X1000AL FLAT ELBOW N1 FIRE	73	KTA1000LP3D1	KT 3X1000AL FLAT ELBOW N1	62
KTA1000FP5B2	KT 5X1000AL FLAT ELBOW N2 FIRE	73	KTA1000LP3D2	KT 3X1000AL FLAT ELBOW N2	62
KTA1000FP5D1	KT 5X1000AL FLAT ELBOW N1 FIRE	73	KTA1000LP3E1	KT 3X1000AL FLAT ELBOW N1	62
KTA1000FP5D2	KT 5X1000AL FLAT ELBOW N2 FIRE	73	KTA1000LP3E2	KT 3X1000AL FLAT ELBOW N2	62
KTA1000FP5E1	KT 5X1000AL FLAT ELBOW N1 FIRE	73	KTA1000LP4A1	KT 4X1000AL FLAT FLBOW N1	62
KTA1000FP5E2	KT 5X1000AL FLAT ELBOW N2 FIRE	73	KTA1000LP4A2	KT 4X1000AL FLAT ELBOW N2	62
KTA1000FP7A1	KT 5X1000AL FLAT ELBOW N1 FIRE	73	KTA1000LP4B1	KT 4X1000AL FLAT ELBOW N1	62
KTA1000FP7A2	KT 5X1000AL FLAT ELBOW N2 FIRE	73	KTA1000LP4B2	KT 4X1000AL FLAT ELBOW N2	62
KTA1000FP7B1	KT 5X1000AL FLAT ELBOW N1 FIRE	73	KTA1000LP4C1	KT 4X1000AL FLAT ELBOW N1	63
KTA1000FP7B2	KT 5X1000AL FLAT ELBOW N2 FIRE	73	KTA1000LP4C2	KT 4X1000AL FLAT ELBOW N2	63
KTA1000FP7D1	KT 5X1000AL FLAT ELBOW N1 FIRE	73	KTA1000LP4D1	KT 4X1000AL FLAT ELBOW N1	62
KTA1000FP7D2	KT 5X1000AL FLAT ELBOW N2 FIRE	73	KTA1000LP4D2	KT 4X1000AL FLAT ELBOW N2	62
KTA1000FP7E1	KT 5X1000AL FLAT ELBOW N1 FIRE	73	KTA1000LP4E1	KT 4X1000AL FLAT ELBOW N1	62
KTA1000FP7E2	KT 5X1000AL FLAT ELBOW N2 FIRE	73	KTA1000LP4E2	KT 4X1000AL FLAT ELBOW N2	62
KTA1000FT31A	KT 3X1000AL FEEDER LENGTH FIRE	72	KTA1000LP5A1	KT 5X1000AL FLAT ELBOW N1	62
KTA1000FT320	KT 3X1000AL FEEDER LENGTH FIRE 2M	72	KTA1000LP5A2	KT 5X1000AL FLAT ELBOW N2	62
KTA1000FT32B	KT 3X1000AL FEEDER LENGTH FIRE	72	KTA1000LP5B1	KT 5X1000AL FLAT ELBOW N1	62
KTA1000FT32C	KT 3X1000AL FEEDER LENGTH FIRE	72	KTA1000LP5B2	KT 5X1000AL FLAT ELBOW N2	62
KTA1000FT33D	KT 3X1000AL FEEDER LENGTH FIRE	72	KTA1000LP5C1	KT 5X1000AL FLAT ELBOW N1	63
KTA1000FT33E	KT 3X1000AL FEEDER LENGTH FIRE	72	KTA1000LP5C2	KT 5X1000AL FLAT ELBOW N2	63
KTA1000FT33F	KT 3X1000AL FEEDER LENGTH FIRE	72	KTA1000LP5D1	KT 5X1000AL FLAT ELBOW N1	62
KTA1000FT340	KT 3X1000AL FEEDER LENGTH FIRE 4M	72	KTA1000LP5D2	KT 5X1000AL FLAT ELBOW N2	62
KTA1000FT41A	KT 4X1000AL FEEDER LENGTH FIRE	72	KTA1000LP5E1	KT 5X1000AL FLAT ELBOW N1	62
KTA1000FT420	KT 4X1000AL FEEDER LENGTH FIRE 2M	72	KTA1000LP5E2	KT 5X1000AL FLAT ELBOW N2	62
KTA1000FT42B	KT 4X1000AL FEEDER LENGTH FIRE	72	KTA1000LP7A1	KT 5X1000AL FLAT ELBOW N1	62
KTA1000FT42C	KT 4X1000AL FEEDER LENGTH FIRE	72	KTA1000LP7A2	KT 5X1000AL FLAT ELBOW N2	62
KTA1000FT43D	KT 4X1000AL FEEDER LENGTH FIRE	72	KTA1000LP7B1	KT 5X1000AL FLAT ELBOW N1	62
KTA1000FT43E	KT 4X1000AL FEEDER LENGTH FIRE	72	KTA1000LP7B2	KT 5X1000AL FLAT ELBOW N2	62
KTA1000FT43F	KT 4X1000AL FEEDER LENGTH FIRE	72	KTA1000LP7C1	KT 5X1000AL FLAT ELBOW N1	63
KTA1000FT440	KT 4X1000AL FEEDER LENGTH FIRE 4M	72	KTA1000LP7C2	KT 5X1000AL FLAT ELBOW N2	63
KTA1000FT51A	KT 5X1000AL FEEDER LENGTH FIRE	72	KTA1000LP7D1	KT 5X800AL FLAT ELBOW N1	62
KTA1000FT520	KT 5X1000AL FEEDER LENGTH FIRE 2M	72	KTA1000LP7D2	KT 5X800AL FLAT ELBOW N2	62
KTA1000FT52B	KT 5X1000AL FEEDER LENGTH FIRE	72	KTA1000LP7E1	KT 5X800AL FLAT ELBOW N1	62
KTA1000FT52C	KT 5X1000AL FEEDER LENGTH FIRE	72	KTA1000LP7E2	KT 5X800AL FLAT ELBOW N2	62
KTA1000FT53D	KT 5X1000AL FEEDER LENGTH FIRE	72	KTA1000PL31	KT 3X1000AL LINE PROTECTOR NS	132
KTA1000FT53E	KT 5X1000AL FEEDER LENGTH FIRE	72	KTA1000PL41	KT 4X1000AL LINE PROTECTOR NS	132
KTA1000FT53F	KT 5X1000AL FEEDER LENGTH FIRE	72	KTA1000PL51	KT 5X1000AL LINE PROTECTOR NS	132
KTA1000FT540	KT 5X1000AL FEEDER LENGTH FIRE 4M	72	KTA1000PL71	KT 5X1000AL LINE PROTECTOR NS	132
KTA1000FT71A KTA1000FT720	KT 5X1000AL FEEDER LENGTH FIRE	72	KTA1000SL31	KT 3X1000AL ISOLATOR UNIT NA	129
	KT 5X1000AL FEEDER LENGTH FIRE 2M	72	KTA1000SL41	KT 4X1000AL ISOLATOR UNIT NA	129
KTA1000FT72B KTA1000FT72C	KT 5X1000AL FEEDER LENGTH FIRE KT 5X1000AL FEEDER LENGTH FIRE	72 72	KTA1000SL51 KTA1000SL71	KT 5X1000AL ISOLATOR UNIT NA KT 5X1000AL ISOLATOR UNIT NA	129 129
KTA1000FT72C	KT 5X1000AL FEEDER LENGTH FIRE	72	KTA10003E71	KT 3X1000AL ISOLATOR ON TINA KT 3X1000AL TEE ON EDGE	67
KTA1000FT73E		72	KTA1000TC3	KT 4X1000AL TEE ON EDGE	67
	KT 5X1000AL FEEDER LENGTH FIRE				
KTA1000FT73F	KT 5X1000AL FEEDER LENGTH FIRE	72	KTA1000TC5	KT 5X1000AL TEE ON EDGE KT 5X1000AL TEE ON EDGE	67
KTA1000FT740	KT 5X1000AL FEEDER LENGTH FIRE 4M	72 63	KTA1000TC7		67 58
KTA1000LC3A	KT 3X1000AL EDGEWISE ELBOW		KTA1000TN410	KT 4X1000AL NEUTRAL PERMUTA	58
KTA1000LC3B	KT 3X1000AL EDGEWISE ELBOW KT 3X1000AL EDGEWISE ELBOW	63	KTA1000TN610 KTA1000TP410	KT 4X1000AL NEUTRAL PERMUTA KT 4X1000AL PHASES PERMUTA	
KTA1000LC3D KTA1000LC3E	KT 3X1000AL EDGEWISE ELBOW KT 3X1000AL EDGEWISE ELBOW	63 63	KTA1000TP410	KT 4X1000AL PHASES PERMUTA KT 4X1000AL PHASES PERMUTA	58 58
	KT 4X1000AL EDGEWISE ELBOW	63	KTA10001P610		60
KTA1000LC4A		63		KT 3X1000AL JUNCTION BLOC	60
KTA1000LC4B	KT 4X1000AL EDGEWISE ELBOW		KTA1000YA4	KT 4X1000AL JUNCTION BLOC	
KTA1000LC4E	KT 4X1000AL EDGEWISE ELBOW	63	KTA1000YA5	KT 5X1000AL JUNCTION BLOC	60 60
KTA1000LC4E	KT 4X1000AL EDGEWISE ELBOW	63	KTA1000YA6	KT 4X1000AL JUNCTION BLOC	
KTA1000LC5A	KT 5X1000AL EDGEWISE ELBOW	63	KTA1000YA7	KT 5X1000AL JUNCTION BLOC	60
KTA1000LC5B	KT 5X1000AL EDGEWISE ELBOW	63	KTA1000ZC31	KT 3X1000AL EDGEWISE ZED N1	68
KTA1000LC5D KTA1000LC5E	KT 5X1000AL EDGEWISE ELBOW	63	KTA1000ZC32	KT 3X1000AL EDGEWISE ZED N2	68
	KT 5X1000AL EDGEWISE ELBOW	63	KTA1000ZC41	KT 4X1000AL EDGEWISE ZED N1	68

at. no.	Designations	Pages	Cat. no.	Designations	Pages
ΓA1000ZC42	KT 4X1000AL EDGEWISE ZED N2	68	KTA1250EH340	KT 3X1250AL KH PLUG-IN LENGTH 4M	55
TA1000ZC51	KT 5X1000AL EDGEWISE ZED N1	68	KTA1250EH420	KT 4X1250AL KH PLUG-IN LENGTH 2M	55
A1000ZC52	KT 5X1000AL EDGEWISE ZED N2	68	KTA1250EH440	KT 4X1250AL KH PLUG-IN LENGTH 4M	55
A1000ZC71	KT 5X1000AL EDGEWISE ZED N1	68	KTA1250EH520	KT 5X1250AL KH PLUG-IN LENGTH 2M	55
A1000ZC72	KT 5X1000AL EDGEWISE ZED N2	68	KTA1250EH540	KT 5X1250AL KH PLUG-IN LENGTH 4M	55
ΓA1000ZP3	KT 3X1000A L ZED ON FLAT	68	KTA1250EL31	KT 3X1250AL FEED UNIT EL N1	94
ΓA1000ZP4	KT 4X1000AL ZED ON FLAT	68	KTA1250EL32	KT 3X1250AL FEED UNIT EL N2	94
TA1000ZP5	KT 5X1000AL ZED ON FLAT	68	KTA1250EL33	KT 3X1250AL FEED UNIT EL N3	96
TA1000ZP7	KT 5X1000AL ZED ON FLAT	68	KTA1250EL34	KT 3X1250AL FEED UNIT EL N4	96
			KTA1250EL35	KT 3X1250AL FEED UNIT EL N5	97
TA1250			KTA1250EL41	KT 4X1250AL FEED UNIT EL N1	94
TA1250CP31	KT 3X1250AL FLAT EDGEWISE N1	70	KTA1250EL42	KT 4X1250AL FEED UNIT EL N2	94
TA1250CP31	KT 3X1250AL FLAT EDGEWISE N2	70	KTA1250EL43	KT 4X1250AL FEED UNIT EL N3	96
A1250CP32	KT 3X1250AL FLAT EDGEWISE N2 KT 3X1250AL FLAT EDGEWISE N3	70	KTA1250EL44	KT 4X1250AL FEED UNIT EL N4	96
A1250CP33	KT 3X1250AL FLAT EDGEWISE N3	70	KTA1250EL45	KT 4X1250AL FEED UNIT EL N5	97
			KTA1250EL51	KT 5X1250AL FEED UNIT EL N1	94
A1250CP41	KT 4X1250AL FLAT EDGEWISE N1	70	KTA1250EL52	KT 5X1250AL FEED UNIT EL N2	94
A1250CP42	KT 4X1250AL FLAT EDGEWISE N2	70	KTA1250EL53	KT 5X1250AL FEED UNIT EL N3	96
A1250CP43	KT 4X1250AL FLAT EDGEWISE N3	70	KTA1250EL54	KT 5X1250AL FEED UNIT EL N4	96
A1250CP44	KT 4X1250AL FLAT EDGEWISE N4	70	KTA1250EL54	KT 5X1250AL FEED UNIT EL N5	97
A1250CP51	KT 5X1250AL FLAT EDGEWISE N1	70	KTA1250EL55		97
A1250CP52	KT 5X1250AL FLAT EDGEWISE N2	70		KT 5X1250AL FEED UNIT EL N1	94
A1250CP53	KT 5X1250AL FLAT EDGEWISE N3	70	KTA1250EL72	KT 5X1250AL FEED UNIT EL N2	
A1250CP54	KT 5X1250AL FLAT EDGEWISE N4	70	KTA1250EL73	KT 5X1250AL FEED UNIT EL N3	96
A1250CP71	KT 5X1250AL FLAT EDGEWISE N1	70	KTA1250EL74	KT 5X1250AL FEED UNIT EL N4	96
A1250CP72	KT 5X1250AL FLAT EDGEWISE N2	70	KTA1250EL75	KT 5X1250AL FEED UNIT EL N5	97
A1250CP73	KT 5X1250AL FLAT EDGEWISE N3	70	KTA1250ER31	KT 3X1250AL FEED UNIT ER N1	80
TA1250CP74	KT 5X1250AL FLAT EDGEWISE N4	70	KTA1250ER32	KT 3X1250AL FEED UNIT ER N2	80
A1250DB310	KT 3X1250AL EXPANSION UNIT	58	KTA1250ER33	KT 3X1250AL FEED UNIT ER N3	81
A1250DB410	KT 4X1250AL EXPANSION UNIT	58	KTA1250ER34	KT 3X1250AL FEED UNIT ER N4	81
A1250DB510	KT 5X1250AL EXPANSION UNIT	58	KTA1250ER35	KT 3X1250AL FEED UNIT ER N5	82
A1250DB710	KT 5X1250AL EXPANSION UNIT	58	KTA1250ER36	KT 3X1250AL FEED UNIT ER N6	82
A1250EB320	KT 3X1250AL BOLT ON LENGTH 2M	54	KTA1250ER37	KT 3X1250AL FEED UNIT ER N7	86
A1250EB340	KT 3X1250AL BOLT ON LENGTH 4M	54	KTA1250ER41	KT 4X1250AL FEED UNIT ER N1	80
A1250EB420	KT 4X1250AL BOLT ON LENGTH 2M	54	KTA1250ER42	KT 4X1250AL FEED UNIT ER N2	80
A1250EB440	KT 4X1250AL BOLT ON LENGTH 4M	54	KTA1250ER43	KT 4X1250AL FEED UNIT ER N3	81
TA1250EB520	KT 5X1250AL BOLT ON LENGTH 2M	54	KTA1250ER44	KT 4X1250AL FEED UNIT ER N4	81
TA1250EB540	KT 5X1250AL BOLT ON LENGTH 4M	54	KTA1250ER45	KT 4X1250AL FEED UNIT ER N5	82
TA1250EB720	KT 5X1250AL BOLT ON LENGTH 2M	54	KTA1250ER46	KT 4X1250AL FEED UNIT ER N6	82
TA1250EB740	KT 5X1250AL BOLT ON LENGTH 4M	54	KTA1250ER47	KT 4X1250AL FEED UNIT ER N7	86
	KT 1X1250AL PLUG-IN LENGTH 2M	52	KTA1250ER51	KT 5X1250AL FEED UNIT ER N1	80
	KT 3X1250AL PLUG-IN LENGTH 2M	52	KTA1250ER52	KT 5X1250AL FEED UNIT ER N2	80
	KT 1X1250AL PLUG-IN LENGTH 2W	52	KTA1250ER53	KT 5X1250AL FEED UNIT ER N3	81
	KT 2X1250AL PLUG-IN LENGTH		KTA1250ER54	KT 5X1250AL FEED UNIT ER N4	81
		52	KTA1250ER55	KT 5X1250AL FEED UNIT ER N5	82
	KT 1X1250AL PLUG-IN LENGTH	52	KTA1250ER56	KT 5X1250AL FEED UNIT ER N6	82
	KT 3X1250AL PLUG-IN LENGTH	52	KTA1250ER57	KT 5X1250AL FEED UNIT ER N7	86
	KT 3X1250AL PLUG-IN LENGTH 4M	52	KTA1250ER71	KT 5X1250AL FEED UNIT ER N1	80
	KT 1X1250AL PLUG-IN LENGTH 2M	52	KTA1250ER71	KT 5X1250AL FEED UNIT ER N1 KT 5X1250AL FEED UNIT ER N2	80
	KT 4X1250AL PLUG-IN LENGTH 2M	52		KT 5X1250AL FEED UNIT ER N2 KT 5X1250AL FEED UNIT ER N3	
	KT 1X1250AL PLUG-IN LENGTH	52	KTA1250ER73	KT 5X1250AL FEED UNIT ER N3 KT 5X1250AL FEED UNIT ER N4	81 81
	KT 2X1250AL PLUG-IN LENGTH	52	KTA1250ER74		82
	KT 1X1250AL PLUG-IN LENGTH	52	KTA1250ER75	KT 5X1250AL FEED UNIT ER N5	
	KT 3X1250AL PLUG-IN LENGTH	52	KTA1250ER76	KT 5X1250AL FEED UNIT ER N6	82
	KT 4X1250AL PLUG-IN LENGTH 4M	52	KTA1250ER77	KT 5X1250AL FEED UNIT ER N7	86
	KT 1X1250AL PLUG-IN LENGTH 2M	52	KTA1250ET31A	KT 3X1250AL FEEDER LENGTH	52
A1250ED5203	KT 5X1250AL PLUG-IN LENGTH 2M	52	KTA1250ET320	KT 3X1250AL FEEDER LENGTH 2M	52
A1250ED5301	KT 1X1250AL PLUG-IN LENGTH	52	KTA1250ET32B	KT 3X1250AL FEEDER LENGTH	52
A1250ED5302	KT 2X1250AL PLUG-IN LENGTH	52	KTA1250ET32C	KT 3X1250AL FEEDER LENGTH	52
A1250ED5351	KT 1X1250AL PLUG-IN LENGTH	52	KTA1250ET33D	KT 3X1250AL FEEDER LENGTH	52
A1250ED5353	KT 3X1250AL PLUG-IN LENGTH	52	KTA1250ET33E	KT 3X1250AL FEEDER LENGTH	52
A1250ED5403	KT 5X1250AL PLUG-IN LENGTH 4M	52	KTA1250ET33F	KT 3X1250AL FEEDER LENGTH	52
	KT 1X1250AL PLUG-IN LENGTH 2M	52	KTA1250ET340	KT 3X1250AL FEEDER LENGTH 4M	52
	KT 5X1250AL PLUG-IN LENGTH 2M	52	KTA1250ET41A	KT 4X1250AL FEEDER LENGTH	52
	KT 1X1250AL PLUG-IN LENGTH	52	KTA1250ET420	KT 4X1250AL FEEDER LENGTH 2M	52
	KT 2X1250AL PLUG-IN LENGTH	52	KTA1250ET42B	KT 4X1250AL FEEDER LENGTH	52
	KT 1X1250AL PLUG-IN LENGTH	52	KTA1250ET42C		52
	KT 3X1250AL PLUG-IN LENGTH	52	KTA1250ET43D	KT 4X1250AL FEEDER LENGTH	52
IN IZUUEU/303	NI ON IZOUAL FLUG-III LENGIA			KT 4X1250AL FEEDER LENGTH	52
	KT 5X1250AL PLUG-IN LENGTH 4M	52	KTA1250ET43E		

KTA1250ET440 KTA1250ET51A KTA1250ET520 KTA1250ET52B KTA1250ET52C	Designations KT 4X1250AL FEEDER LENGTH 4M KT 5X1250AL FEEDER LENGTH KT 5X1250AL FEEDER LENGTH 2M	Pages 52 52	Cat. no. KTA1250FT32C	Designations KT 3X1250AL FEEDER LENGTH FIRE KT 3X1250AL FEEDER LENGTH FIRE	Pages 72
KTA1250ET51A KTA1250ET520 KTA1250ET52B KTA1250ET52C	KT 5X1250AL FEEDER LENGTH				
KTA1250ET520 KTA1250ET52B KTA1250ET52C			KTA1250FT33D		72
KTA1250ET52B KTA1250ET52C	TO ONTE OF THE PER PER PER PER PER PER PER PER PER PE	52	KTA1250FT33E	KT 3X1250AL FEEDER LENGTH FIRE	72
KTA1250ET52C	KT 5X1250AL FEEDER LENGTH	52	KTA1250FT33F	KT 3X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL FEEDER LENGTH	52	KTA1250FT340	KT 3X1250AL FEEDER LENGTH FIRE 4M	72
I TAILOUL TOOD	KT 5X1250AL FEEDER LENGTH	52	KTA1250FT41A	KT 4X1250AL FEEDER LENGTH FIRE	72
KTA1250ET53E	KT 5X1250AL FEEDER LENGTH	52	KTA1250FT420	KT 4X1250AL FEEDER LENGTH FIRE 2M	72
	KT 5X1250AL FEEDER LENGTH	52	KTA1250FT42B	KT 4X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL FEEDER LENGTH 4M	52	KTA1250FT42C	KT 4X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL FEEDER LENGTH	52	KTA1250FT43D	KT 4X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL FEEDER LENGTH 2M	52	KTA1250FT43E	KT 4X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL FEEDER LENGTH	52	KTA1250FT43F	KT 4X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL FEEDER LENGTH	52	KTA1250FT440	KT 4X1250AL FEEDER LENGTH FIRE 4M	72
	KT 5X1250AL FEEDER LENGTH	52	KTA1250FT51A	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL FEEDER LENGTH	52	KTA1250FT520	KT 5X1250AL FEEDER LENGTH FIRE 2M	72
	KT 5X1250AL FEEDER LENGTH	52	KTA1250FT52B	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL FEEDER LENGTH 4M	52	KTA1250FT52C	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 3X1250AL EDGEWISE ELBOW	74	KTA1250FT53D	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 3X1250AL EDGEWISE ELBOW	74	KTA1250FT53E	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 3X1250AL EDGEWISE ELBOW	74	KTA1250FT53F	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 3X1250AL EDGEWISE ELBOW	74	KTA1250FT540	KT 5X1250AL FEEDER LENGTH FIRE 4M	72
	KT 4X1250AL EDGEWISE ELBOW	74	KTA1250FT71A	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 4X1250AL EDGEWISE ELBOW	74	KTA1250FT720	KT 5X1250AL FEEDER LENGTH FIRE 2M	72
	KT 4X1250AL EDGEWISE ELBOW	74	KTA1250FT72B	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 4X1250AL EDGEWISE ELBOW	74	KTA1250FT72C	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL EDGEWISE ELBOW	74	KTA1250FT73D	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL EDGEWISE ELBOW	74	KTA1250FT73E	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL EDGEWISE ELBOW	74	KTA1250FT73F	KT 5X1250AL FEEDER LENGTH FIRE	72
	KT 5X1250AL EDGEWISE ELBOW	74	KTA1250FT740	KT 5X1250AL FEEDER LENGTH FIRE 4M	72
	KT 5X1250AL EDGEWISE ELBOW	74	KTA1250LC3A	KT 3X1250AL EDGEWISE ELBOW	63
	KT 5X1250AL EDGEWISE ELBOW	74	KTA1250LC3B	KT 3X1250AL EDGEWISE ELBOW	63
	KT 5X1250AL EDGEWISE ELBOW	74	KTA1250LC3D	KT 3X1250AL EDGEWISE ELBOW	63
	KT 5X1250AL EDGEWISE ELBOW	74	KTA1250LC3E	KT 3X1250AL EDGEWISE ELBOW	63
	KT 3X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LC4A	KT 4X1250AL EDGEWISE ELBOW	63
KTA1250FP3A2	KT 3X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LC4B	KT 4X1250AL EDGEWISE ELBOW	63
KTA1250FP3B1	KT 3X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LC4D	KT 4X1250AL EDGEWISE ELBOW	63
KTA1250FP3B2	KT 3X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LC4E	KT 4X1250AL EDGEWISE ELBOW	63
KTA1250FP3D1	KT 3X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LC5A	KT 5X1250AL EDGEWISE ELBOW	63
KTA1250FP3D2	KT 3X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LC5B	KT 5X1250AL EDGEWISE ELBOW	63
KTA1250FP3E1	KT 3X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LC5D	KT 5X1250AL EDGEWISE ELBOW	63
KTA1250FP3E2	KT 3X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LC5E	KT 5X1250AL EDGEWISE ELBOW	63
KTA1250FP4A1	KT 4X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LC7A	KT 5X1250AL EDGEWISE ELBOW	63
KTA1250FP4A2	KT 4X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LC7B	KT 5X1250AL EDGEWISE ELBOW	63
KTA1250FP4B1	KT 4X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LC7D	KT 5X1250AL EDGEWISE ELBOW	63
KTA1250FP4B2	KT 4X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LC7E	KT 5X1250AL EDGEWISE ELBOW	63
KTA1250FP4D1	KT 4X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LP3A1	KT 3X1250AL FLAT ELBOW N1	62
KTA1250FP4D2	KT 4X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LP3A2	KT 3X1250AL FLAT ELBOW N2	62
KTA1250FP4E1	KT 4X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LP3B1	KT 3X1250AL FLAT ELBOW N1	62
KTA1250FP4E2	KT 4X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LP3B2	KT 3X1250AL FLAT ELBOW N2	62
	KT 5X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LP3C1	KT 3X1250AL FLAT ELBOW N1	63
KTA1250FP5A2	KT 5X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LP3C2	KT 3X1250AL FLAT ELBOW N2	63
KTA1250FP5B1	KT 5X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LP3D1	KT 3X1250AL FLAT ELBOW N1	62
	KT 5X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LP3D2	KT 3X1250AL FLAT ELBOW N2	62
	KT 5X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LP3E1	KT 3X1250AL FLAT ELBOW N1	62
	KT 5X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LP3E2	KT 3X1250AL FLAT ELBOW N2	62
	KT 5X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LP4A1	KT 4X1250AL FLAT ELBOW N1	62
	KT 5X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LP4A2	KT 4X1250AL FLAT ELBOW N2	62
	KT 5X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LP4B1	KT 4X1250AL FLAT ELBOW N1	62
	KT 5X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LP4B2	KT 4X1250AL FLAT ELBOW N2	62
	KT 5X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LP4C1	KT 4X1250AL FLAT ELBOW N1	63
	KT 5X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LP4C2	KT 4X1250AL FLAT ELBOW N2	63
	KT 5X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LP4D1	KT 4X1250AL FLAT ELBOW N1	62
	KT 5X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LP4D2	KT 4X1250AL FLAT ELBOW N2	62
	KT 5X1250AL FLAT ELBOW N1 FIRE	73	KTA1250LP4E1	KT 4X1250AL FLAT ELBOW N1	62
	KT 5X1250AL FLAT ELBOW N2 FIRE	73	KTA1250LP4E2	KT 4X1250AL FLAT ELBOW N2	62
	KT 3X1250AL FEEDER LENGTH FIRE	72	KTA1250LP5A1	KT 5X1250AL FLAT ELBOW N1	62
	KT 3X1250AL FEEDER LENGTH FIRE 2M	72	KTA1250LP5A2	KT 5X1250AL FLAT ELBOW N2	62
KTA1250FT32B	KT 3X1250AL FEEDER LENGTH FIRE	72	KTA1250LP5B1	KT 5X1250AL FLAT ELBOW N1	62

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
TA1250LP5B2	KT 5X1250AL FLAT ELBOW N2	62	KTA1600DB310	KT 3X1600AL EXPANSION UNIT	58
TA1250LP5C1	KT 5X1250AL FLAT ELBOW N1	63	KTA1600DB410	KT 4X1600AL EXPANSION UNIT	58
TA1250LP5C2	KT 5X1250AL FLAT ELBOW N2	63	KTA1600DB510	KT 5X1600AL EXPANSION UNIT	58
TA1250LP5D1	KT 5X1250AL FLAT ELBOW N1	62	KTA1600DB710	KT 5X1600AL EXPANSION UNIT	58
TA1250LP5D2		62	KTA1600EB320	KT 3X1600AL BOLT ON LENGTH 2M	54
TA1250LP5E1	KT 5X1250AL FLAT ELBOW N1	62	KTA1600EB340	KT 3X1600AL BOLT ON LENGTH 4M	54
TA1250LP5E2	KT 5X1250AL FLAT ELBOW N2	62	KTA1600EB420	KT 4X1600AL BOLT ON LENGTH 2M	54
TA1250LP7A1		62	KTA1600EB440	KT 4X1600AL BOLT ON LENGTH 4M	54
TA1250LP7A2		62	KTA1600EB520	KT 5X1600AL BOLT ON LENGTH 2M	54
TA1250LP7B1		62	KTA1600EB540	KT 5X1600AL BOLT ON LENGTH 4M	54
TA1250LP7B2		62	KTA1600EB720	KT 5X1600AL BOLT ON LENGTH 2M	54
TA1250LP7C1		63	KTA1600EB740	KT 5X1600AL BOLT ON LENGTH 4M	54
TA1250LP7C2		63		KT 1X1600AL PLUG-IN LENGTH 2M	52
TA1250LP7D1		62		KT 3X1600AL PLUG-IN LENGTH 2M	52
TA1250LP7D2	KT 5X1250AL FLAT ELBOW N2	62 62		KT 1X1600AL PLUG-IN LENGTH KT 2X1600AL PLUG-IN LENGTH	52 52
TA1250LP7E1	KT 5X1250AL FLAT ELBOW N1	62		KT 1X1600AL PLUG-IN LENGTH	52
TA1250LF7E2	KT 5X1250AL FLAT ELBOW N2 KT 3X1250AL LINE PROTECTOR NS	132		KT 3X1600AL PLUG-IN LENGTH	52
	KT 4X1250AL LINE PROTECTOR NS	132		KT 3X1600AL PLUG-IN LENGTH	52
TA1250PL41 TA1250PL51	KT 5X1250AL LINE PROTECTOR NS	132		KT 1X1600AL PLUG-IN LENGTH 4M KT 1X1600AL PLUG-IN LENGTH 2M	52
TA1250PL51	KT 5X1250AL LINE PROTECTOR NS	132		KT 4X1600AL PLUG-IN LENGTH 2M	52
TA1250PL71	KT 3X1250AL LINE PROTECTOR INS	129		KT 1X1600AL PLUG-IN LENGTH ZW	52
TA1250SL31	KT 4X1250AL ISOLATOR UNIT NA	129		KT 2X1600AL PLUG-IN LENGTH	52
TA1250SL51	KT 5X1250AL ISOLATOR UNIT NA	129		KT 1X1600AL PLUG-IN LENGTH	52
TA1250SL51	KT 5X1250AL ISOLATOR UNIT NA	129		KT 3X1600AL PLUG-IN LENGTH	52
TA1250TC3	KT 3X1250AL TEE ON EDGE	67		KT 4X1600AL PLUG-IN LENGTH 4M	52
TA1250TC4	KT 4X1250AL TEE ON EDGE	67		KT 1X1600AL PLUG-IN LENGTH 2M	52
TA1250TC5	KT 5X1250AL TEE ON EDGE	67		KT 5X1600AL PLUG-IN LENGTH 2M	52
TA1250TC7	KT 5X1250AL TEE ON EDGE	67		KT 1X1600AL PLUG-IN LENGTH	52
TA1250TN410	KT 4X1250AL NEUTRAL PERMUTA	58		KT 2X1600AL PLUG-IN LENGTH	52
TA1250TN610	KT 4X1250AL NEUTRAL PERMUTA	58		KT 1X1600AL PLUG-IN LENGTH	52
TA1250TP410	KT 4X1250AL PHASES PERMUTA	58		KT 3X1600AL PLUG-IN LENGTH	52
TA1250TP610	KT 4X1250AL PHASES PERMUTA	58		KT 5X1600AL PLUG-IN LENGTH 4M	52
TA1250YA3	KT 3X1250AL JUNCTION BLOC	60		KT 1X1600AL PLUG-IN LENGTH 2M	52
TA1250YA4	KT 4X1250AL JUNCTION BLOC	60		KT 5X1600AL PLUG-IN LENGTH 2M	52
TA1250YA5	KT 5X1250AL JUNCTION BLOC	60	KTA1600ED7301	KT 1X1600AL PLUG-IN LENGTH	52
TA1250YA6	KT 4X1250AL JUNCTION BLOC	60	KTA1600ED7302	KT 2X1600AL PLUG-IN LENGTH	52
TA1250YA7	KT 5X1250AL JUNCTION BLOC	60	KTA1600ED7351	KT 1X1600AL PLUG-IN LENGTH	52
TA1250ZC31	KT 3X1250AL EDGEWISE ZED N1	68	KTA1600ED7353	KT 3X1600AL PLUG-IN LENGTH	52
TA1250ZC32	KT 3X1250AL EDGEWISE ZED N2	68	KTA1600ED7403	KT 5X1600AL PLUG-IN LENGTH 4M	52
TA1250ZC41	KT 4X1250AL EDGEWISE ZED N1	68	KTA1600EH320	KT 3X1600AL KH PLUG-IN LENGTH 2M	55
TA1250ZC42	KT 4X1250AL EDGEWISE ZED N2	68	KTA1600EH340	KT 3X1600AL KH PLUG-IN LENGTH 4M	55
TA1250ZC51	KT 5X1250AL EDGEWISE ZED N1	68	KTA1600EH420	KT 4X1600AL KH PLUG-IN LENGTH 2M	55
TA1250ZC52	KT 5X1250AL EDGEWISE ZED N2	68	KTA1600EH440	KT 4X1600AL KH PLUG-IN LENGTH 4M	55
TA1250ZC71	KT 5X1250AL EDGEWISE ZED N1	68	KTA1600EH520	KT 5X1600AL KH PLUG-IN LENGTH 2M	55
TA1250ZC72	KT 5X1250AL EDGEWISE ZED N2	68	KTA1600EH540	KT 5X1600AL KH PLUG-IN LENGTH 4M	55
TA1250ZP3	KT 3X1250AL ZED ON FLAT	68	KTA1600EL31	KT 3X1600AL FEED UNIT EL N1	94
TA1250ZP4	KT 4X1250AL ZED ON FLAT	68	KTA1600EL32	KT 3X1600AL FEED UNIT EL N2	94
TA1250ZP5	KT 5X1250AL ZED ON FLAT	68	KTA1600EL33	KT 3X1600AL FEED UNIT EL N3	96
TA1250ZP7	KT 5X1250AL ZED ON FLAT	68	KTA1600EL34	KT 3X1600AL FEED UNIT EL N4	96
			KTA1600EL35	KT 3X1600AL FEED UNIT EL N5	97
TA1600			KTA1600EL41	KT 4X1600AL FEED UNIT EL N1	94
TA1600CP31	KT 3X1600AL FLAT EDGEWISE N1	70	KTA1600EL42	KT 4X1600AL FEED UNIT EL N2	94
TA1600CP32	KT 3X1600AL FLAT EDGEWISE N2	70	KTA1600EL43	KT 4X1600AL FEED UNIT EL N3	96
TA1600CP33	KT 3X1600AL FLAT EDGEWISE N3	70	KTA1600EL44	KT 4X1600AL FEED UNIT EL N4	96
TA1600CP34	KT 3X1600AL FLAT EDGEWISE N4	70	KTA1600EL45	KT 4X1600AL FEED UNIT EL N5	97
TA1600CP41	KT 4X1600AL FLAT EDGEWISE N1	70	KTA1600EL51	KT 5X1600AL FEED UNIT EL N1	94
A1600CP42	KT 4X1600AL FLAT EDGEWISE N2	70	KTA1600EL52	KT 5X1600AL FEED UNIT EL N2	94
TA1600CP43	KT 4X1600AL FLAT EDGEWISE N3	70	KTA1600EL53	KT 5X1600AL FEED UNIT EL NA	96
TA1600CP44	KT 4X1600AL FLAT EDGEWISE N4	70	KTA1600EL54	KT 5X1600AL FEED UNIT EL NA	96
TA1600CP51	KT 5X1600AL FLAT EDGEWISE N1	70	KTA1600EL55	KT 5X1600AL FEED UNIT EL N5	97
TA1600CP52	KT 5X1600AL FLAT EDGEWISE N2	70	KTA1600EL71	KT 5X1600AL FEED UNIT EL NI	94
TA1600CP53	KT 5X1600AL FLAT EDGEWISE N3	70	KTA1600EL72	KT 5X1600AL FEED UNIT EL N2	94
TA1600CP54	KT 5X1600AL FLAT EDGEWISE N4	70	KTA1600EL73	KT 5X1600AL FEED UNIT EL N3	96
TA1600CP71	KT 5X1600AL FLAT EDGEWISE N1	70	KTA1600EL74	KT 5X1600AL FEED UNIT EL NA	96
TA1600CP72	KT 5X1600AL FLAT EDGEWISE N2	70	KTA1600EL75	KT 5X1600AL FEED UNIT ED NA	97
TA1600CP73	KT 5X1600AL FLAT EDGEWISE N3	70	KTA1600ER31	KT 3X1600AL FEED UNIT ER N1	80
TA1600CP74	KT 5X1600AL FLAT EDGEWISE N4	70	KTA1600ER32	KT 3X1600AL FEED UNIT ER N2	80

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
KTA1600ER33	KT 3X1600AL FEED UNIT ER N3	81	KTA1600FC5D	KT 5X1600AL EDGEWISE ELBOW	74
KTA1600ER33	KT 3X1600AL FEED UNIT ER N3	81	KTA1600FC5E	KT 5X1600AL EDGEWISE ELBOW	74
KTA1600ER35	KT 3X1600AL FEED UNIT ER N5	82	KTA1600FC3E	KT 5X1600AL EDGEWISE ELBOW	74
		82			74
KTA1600ER36	KT 3X1600AL FEED UNIT ER N6 KT 3X1600AL FEED UNIT ER N7		KTA1600FC7B KTA1600FC7D	KT 5X1600AL EDGEWISE ELBOW	74
KTA1600ER37		86		KT 5X1600AL EDGEWISE ELBOW	
KTA1600ER41	KT 4X1600AL FEED UNIT ER N1	80	KTA1600FC7E	KT 5X1600AL EDGEWISE ELBOW	74
KTA1600ER42	KT 4X1600AL FEED UNIT ER N2	80	KTA1600FP3A1	KT 3X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ER43	KT 4X1600AL FEED UNIT ER N3	81	KTA1600FP3A2	KT 3X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ER44	KT 4X1600AL FEED UNIT ER N4	81	KTA1600FP3B1	KT 3X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ER45	KT 4X1600AL FEED UNIT ER N5	82	KTA1600FP3B2	KT 3X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ER46	KT 4X1600AL FEED UNIT ER N6	82	KTA1600FP3D1	KT 3X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ER47	KT 4X1600AL FEED UNIT ER N7	86	KTA1600FP3D2	KT 3X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ER51	KT 5X1600AL FEED UNIT ER N1	80	KTA1600FP3E1	KT 3X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ER52	KT 5X1600AL FEED UNIT ER N2	80	KTA1600FP3E2	KT 3X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ER53	KT 5X1600AL FEED UNIT ER N3	81	KTA1600FP4A1	KT 4X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ER54	KT 5X1600AL FEED UNIT ER N4	81	KTA1600FP4A2	KT 4X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ER55	KT 5X1600AL FEED UNIT ER N5	82	KTA1600FP4B1	KT 4X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ER56	KT 5X1600AL FEED UNIT ER N6	82	KTA1600FP4B2	KT 4X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ER57	KT 5X1600AL FEED UNIT ER N7	86	KTA1600FP4D1	KT 4X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ER71	KT 5X1600AL FEED UNIT ER N1	80	KTA1600FP4D2	KT 4X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ER72	KT 5X1600AL FEED UNIT ER N2	80	KTA1600FP4E1	KT 4X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ER73	KT 5X1600AL FEED UNIT ER N3	81	KTA1600FP4E2	KT 4X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ER74	KT 5X1600AL FEED UNIT ER N4	81	KTA1600FP5A1	KT 5X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ER75	KT 5X1600AL FEED UNIT ER N5	82	KTA1600FP5A2	KT 5X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ER76	KT 5X1600AL FEED UNIT ER N6	82	KTA1600FP5B1	KT 5X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ER77	KT 5X1600AL FEED UNIT ER N7	86	KTA1600FP5B2	KT 5X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ET31A	KT 3X1600AL FEEDER LENGTH	52	KTA1600FP5D1	KT 5X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ET320	KT 3X1600AL FEEDER LENGTH 2M	52	KTA1600FP5D2	KT 5X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ET32B	KT 3X1600AL FEEDER LENGTH	52	KTA1600FP5E1	KT 5X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ET32C	KT 3X1600AL FEEDER LENGTH	52	KTA1600FP5E2	KT 5X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ET320	KT 3X1600AL FEEDER LENGTH	52	KTA1600FP7A1	KT 5X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ET33E		52	KTA1600FP7A1		73
	KT 3X1600AL FEEDER LENGTH			KT 5X1600AL FLAT ELBOW N2 FIRE	
KTA1600ET33F	KT 3X1600AL FEEDER LENGTH	52	KTA1600FP7B1	KT 5X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ET340	KT 3X1600AL FEEDER LENGTH 4M	52	KTA1600FP7B2	KT 5X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ET41A	KT 4X1600AL FEEDER LENGTH	52	KTA1600FP7D1	KT 5X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ET420	KT 4X1600AL FEEDER LENGTH 2M	52	KTA1600FP7D2	KT 5X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ET42B	KT 4X1600AL FEEDER LENGTH	52	KTA1600FP7E1	KT 5X1600AL FLAT ELBOW N1 FIRE	73
KTA1600ET42C	KT 4X1600AL FEEDER LENGTH	52	KTA1600FP7E2	KT 5X1600AL FLAT ELBOW N2 FIRE	73
KTA1600ET43D	KT 4X1600AL FEEDER LENGTH	52	KTA1600FT31A	KT 3X1600AL FEEDER LENGTH FIRE	72
KTA1600ET43E	KT 4X1600AL FEEDER LENGTH	52	KTA1600FT320	KT 3X1600AL FEEDER LENGTH FIRE 2M	72
KTA1600ET43F	KT 4X1600AL FEEDER LENGTH	52	KTA1600FT32B	KT 3X1600AL FEEDER LENGTH FIRE	72
KTA1600ET440	KT 4X1600AL FEEDER LENGTH 4M	52	KTA1600FT32C	KT 3X1600AL FEEDER LENGTH FIRE	72
KTA1600ET51A	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT33D	KT 3X1600AL FEEDER LENGTH FIRE	72
KTA1600ET520	KT 5X1600AL FEEDER LENGTH 2M	52	KTA1600FT33E	KT 3X1600AL FEEDER LENGTH FIRE	72
KTA1600ET52B	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT33F	KT 3X1600AL FEEDER LENGTH FIRE	72
KTA1600ET52C	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT340	KT 3X1600AL FEEDER LENGTH FIRE 4M	72
KTA1600ET53D	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT41A	KT 4X1600AL FEEDER LENGTH FIRE	72
KTA1600ET53E	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT420	KT 4X1600AL FEEDER LENGTH FIRE 2M	72
KTA1600ET53F	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT42B	KT 4X1600AL FEEDER LENGTH FIRE	72
KTA1600ET540	KT 5X1600AL FEEDER LENGTH 4M	52	KTA1600FT42C	KT 4X1600AL FEEDER LENGTH FIRE	72
KTA1600ET71A	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT43D	KT 4X1600AL FEEDER LENGTH FIRE	72
KTA1600ET720	KT 5X1600AL FEEDER LENGTH 2M	52	KTA1600FT43E	KT 4X1600AL FEEDER LENGTH FIRE	72
KTA1600ET72B	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT43F	KT 4X1600AL FEEDER LENGTH FIRE	72
KTA1600ET72C	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT440	KT 4X1600AL FEEDER LENGTH FIRE 4M	72
KTA1600ET73D	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT51A	KT 5X1600AL FEEDER LENGTH FIRE	72
KTA1600ET73E	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT520	KT 5X1600AL FEEDER LENGTH FIRE 2M	72
KTA1600ET73F	KT 5X1600AL FEEDER LENGTH	52	KTA1600FT52B	KT 5X1600AL FEEDER LENGTH FIRE	72
KTA1600ET740	KT 5X1600AL FEEDER LENGTH 4M	52	KTA1600FT52C	KT 5X1600AL FEEDER LENGTH FIRE	72
KTA1600FC3A	KT 3X1600AL EDGEWISE ELBOW	74	KTA1600FT53D	KT 5X1600AL FEEDER LENGTH FIRE	72
KTA1600FC3B	KT 3X1600AL EDGEWISE ELBOW	74	KTA1600FT53E	KT 5X1600AL FEEDER LENGTH FIRE	72
KTA1600FC3D	KT 3X1600AL EDGEWISE ELBOW	74	KTA1600FT53F	KT 5X1600AL FEEDER LENGTH FIRE	72
KTA1600FC3E	KT 3X1600AL EDGEWISE ELBOW	74	KTA1600FT540	KT 5X1600AL FEEDER LENGTH FIRE 4M	72
KTA1600FC4A	KT 4X1600AL EDGEWISE ELBOW	74	KTA1600FT71A	KT 5X1600AL FEEDER LENGTH FIRE	72
KTA1600FC4B	KT 4X1600AL EDGEWISE ELBOW	74	KTA1600FT720	KT 5X1600AL FEEDER LENGTH FIRE 2M	72
KTA1600FC4B	KT 4X1600AL EDGEWISE ELBOW	74	KTA1600FT72B	KT 5X1600AL FEEDER LENGTH FIRE	72
KTA1600FC4E	KT 4X1600AL EDGEWISE ELBOW	74	KTA1600FT72C	KT 5X1600AL FEEDER LENGTH FIRE	72
KTA1600FC5A	KT 5X1600AL EDGEWISE ELBOW	74	KTA1600FT72C	KT 5X1600AL FEEDER LENGTH FIRE	72
KTA1600FC5B	KT 5X1600AL EDGEWISE ELBOW	74	KTA1600FT73E	KT 5X1600AL FEEDER LENGTH FIRE	72
KIMIOUUFCOB	NT 3/ 1000AL LDGEWISE ELDOW	14	KIA IOUUF I / 3E	IN SATUUDALT LEDER LENGTH FIRE	12

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
TA1600FT73F	KT 5X1600AL FEEDER LENGTH FIRE	72	KTA1600TC5	KT 5X1600AL TEE ON EDGE	67
TA1600FT740	KT 5X1600AL FEEDER LENGTH FIRE 4M	72	KTA1600TC7	KT 5X1600AL TEE ON EDGE	67
TA1600LC3A	KT 3X1600AL EDGEWISE ELBOW	63	KTA1600TN410	KT 4X1600AL NEUTRAL PERMUTA	58
TA1600LC3B	KT 3X1600AL EDGEWISE ELBOW	63	KTA1600TN610	KT 4X1600AL NEUTRAL PERMUTA	58
TA1600LC3D	KT 3X1600AL EDGEWISE ELBOW	63	KTA1600TP410	KT 4X1600AL PHASES PERMUTA	58
TA1600LC3E	KT 3X1600AL EDGEWISE ELBOW	63	KTA1600TP610	KT 4X1600AL PHASES PERMUTA	58
TA1600LC4A	KT 4X1600AL EDGEWISE ELBOW	63	KTA1600YA3	KT 3X1600AL JUNCTION BLOC	60
TA1600LC4B	KT 4X1600AL EDGEWISE ELBOW	63	KTA1600YA4	KT 4X1600AL JUNCTION BLOC	60
TA1600LC4D	KT 4X1600AL EDGEWISE ELBOW	63	KTA1600YA5	KT 5X1600AL JUNCTION BLOC	60
TA1600LC4E	KT 4X1600AL EDGEWISE ELBOW	63	KTA1600YA6	KT 4X1600AL JUNCTION BLOC	60
TA1600LC5A	KT 5X1600AL EDGEWISE ELBOW	63	KTA1600YA7	KT 5X1600AL JUNCTION BLOC	60
	KT 5X1600AL EDGEWISE ELBOW	63	KTA1600ZC31	KT 3X1600AL EDGEWISE ZED N1	68
	KT 5X1600AL EDGEWISE ELBOW	63	KTA1600ZC32	KT 3X1600AL EDGEWISE ZED N2	68
	KT 5X1600AL EDGEWISE ELBOW	63	KTA1600ZC41	KT 4X1600AL EDGEWISE ZED N1	68
	KT 5X1600AL EDGEWISE ELBOW	63	KTA1600ZC42	KT 4X1600AL EDGEWISE ZED N2	68
	KT 5X1600AL EDGEWISE ELBOW	63	KTA1600ZC51	KT 5X1600AL EDGEWISE ZED N1	68
	KT 5X1600AL EDGEWISE ELBOW	63	KTA1600ZC52	KT 5X1600AL EDGEWISE ZED N2	68
	KT 5X1600AL EDGEWISE ELBOW	63	KTA1600ZC71	KT 5X1600AL EDGEWISE ZED N1	68
	KT 3X1600AL FLAT ELBOW N1	62	KTA1600ZC72	KT 5X1600AL EDGEWISE ZED N2	68
	KT 3X1600AL FLAT ELBOW N2	62	KTA1600ZP3	KT 3X1600AL ZED ON FLAT	68
TA1600LP3B1	KT 3X1600AL FLAT ELBOW N1	62	KTA1600ZP4	KT 4X1600AL ZED ON FLAT	68
TA1600LP3B2	KT 3X1600AL FLAT ELBOW N2	62	KTA1600ZP5	KT 5X1600AL ZED ON FLAT	68
TA1600LP3C1	KT 3X1600AL FLAT ELBOW N1	63	KTA1600ZP7	KT 5X1600AL ZED ON FLAT	68
TA1600LP3C2	KT 3X1600AL FLAT ELBOW N2	63			
TA1600LP3D1	KT 3X1600AL FLAT ELBOW N1	62	KTA2000		
TA1600LP3D2	KT 3X1600AL FLAT ELBOW N2	62	KTA2000CP31	KT 3X2000AL FLAT EDGEWISE N1	70
TA1600LP3E1	KT 3X1600AL FLAT ELBOW N1	62	KTA2000CP32	KT 3X2000AL FLAT EDGEWISE N2	70
	KT 3X1600AL FLAT ELBOW N2	62			
	KT 4X1600AL FLAT ELBOW N1	62	KTA2000CP33	KT 3X2000AL FLAT EDGEWISE N3	70
	KT 4X1600AL FLAT ELBOW N2	62	KTA2000CP34	KT 3X2000AL FLAT EDGEWISE N4	70
		62	KTA2000CP41	KT 4X2000AL FLAT EDGEWISE N1	70
	KT 4X1600AL FLAT ELBOW N1		KTA2000CP42	KT 4X2000AL FLAT EDGEWISE N2	70
	KT 4X1600AL FLAT ELBOW N2	62	KTA2000CP43	KT 4X2000AL FLAT EDGEWISE N3	70
	KT 4X1600AL FLAT ELBOW N1	63	KTA2000CP44	KT 4X2000AL FLAT EDGEWISE N4	70
	KT 4X1600AL FLAT ELBOW N2	63	KTA2000CP51	KT 5X2000AL FLAT EDGEWISE N1	70
	KT 4X1600AL FLAT ELBOW N1	62	KTA2000CP52	KT 5X2000AL FLAT EDGEWISE N2	70
TA1600LP4D2	KT 4X1600AL FLAT ELBOW N2	62	KTA2000CP53	KT 5X2000AL FLAT EDGEWISE N3	70
TA1600LP4E1	KT 4X1600AL FLAT ELBOW N1	62	KTA2000CP54	KT 5X2000AL FLAT EDGEWISE N4	70
TA1600LP4E2	KT 4X1600AL FLAT ELBOW N2	62	KTA2000CP71	KT 5X2000AL FLAT EDGEWISE N1	70
TA1600LP5A1	KT 5X1600AL FLAT ELBOW N1	62	KTA2000CP72	KT 5X2000AL FLAT EDGEWISE N2	70
TA1600LP5A2	KT 5X1600AL FLAT ELBOW N2	62	KTA2000CP73	KT 5X2000AL FLAT EDGEWISE N3	70
TA1600LP5B1	KT 5X1600AL FLAT ELBOW N1	62	KTA2000CP74	KT 5X2000AL FLAT EDGEWISE N4	70
TA1600LP5B2	KT 5X1600AL FLAT ELBOW N2	62	KTA2000DB310	KT 3X2000AL EXPANSION UNIT	58
TA1600LP5C1	KT 5X1600AL FLAT ELBOW N1	63	KTA2000DB310		58
	KT 5X1600AL FLAT ELBOW N2	63	KTA2000DB510	KT 5X2000AL EXPANSION UNIT	
	KT 5X1600AL FLAT ELBOW N1	62			58
	KT 5X1600AL FLAT ELBOW N2	62	KTA2000DB710	KT 5X2000AL EXPANSION UNIT	58
	KT 5X1600ALT LAT ELBOW N1	62	KTA2000EB320	KT 3X2000AL BOLT ON LENGTH 2M	54
	KT 5X1600AL FLAT ELBOW N1 KT 5X1600AL FLAT ELBOW N2	62	KTA2000EB340	KT 3X2000AL BOLT ON LENGTH 4M	54
			KTA2000EB420	KT 4X2000AL BOLT ON LENGTH 2M	54
	KT 5X1600AL FLAT ELBOW N1	62	KTA2000EB440	KT 4X2000AL BOLT ON LENGTH 4M	54
	KT 5X1600AL FLAT ELBOW N2	62	KTA2000EB520	KT 5X2000AL BOLT ON LENGTH 2M	54
	KT 5X1600AL FLAT ELBOW N1	62	KTA2000EB540	KT 5X2000AL BOLT ON LENGTH 4M	54
	KT 5X1600AL FLAT ELBOW N2	62	KTA2000EB720	KT 5X2000AL BOLT ON LENGTH 2M	54
	KT 5X1600AL FLAT ELBOW N1	63	KTA2000EB740	KT 5X2000AL BOLT ON LENGTH 4M	54
	KT 5X1600AL FLAT ELBOW N2	63	KTA2000ED3201	KT 1X2000AL PLUG-IN LENGTH 2M	52
	KT 5X1600AL FLAT ELBOW N1	62	KTA2000ED3203	KT 3X2000AL PLUG-IN LENGTH 2M	52
TA1600LP7D2	KT 5X1600AL FLAT ELBOW N2	62	KTA2000ED3301	KT 1X2000AL PLUG-IN LENGTH	52
TA1600LP7E1	KT 5X1600AL FLAT ELBOW N1	62		KT 2X2000AL PLUG-IN LENGTH	52
A1600LP7E2	KT 5X1600AL FLAT ELBOW N2	62		KT 1X2000AL PLUG-IN LENGTH	52
A1600PL31	KT 3X1600AL LINE PROTECTOR NS	132		KT 3X2000AL PLUG-IN LENGTH	52
	KT 4X1600AL LINE PROTECTOR NS	132		KT 3X2000AL PLUG-IN LENGTH 4M	52
	KT 5X1600AL LINE PROTECTOR NS	132		KT 1X2000AL PLUG-IN LENGTH 4M	
	KT 5X1600AL LINE PROTECTOR NS	132			52
	KT 3X1600AL ISOLATOR UNIT NA			KT 4X2000AL PLUG-IN LENGTH 2M	52
		129		KT 1X2000AL PLUG-IN LENGTH	52
	KT 4X1600AL ISOLATOR UNIT NA	129		KT 2X2000AL PLUG-IN LENGTH	52
	KT 5X1600AL ISOLATOR UNIT NA	129		KT 1X2000AL PLUG-IN LENGTH	52
	KT 5X1600AL ISOLATOR UNIT NA	129	KTA2000ED4353	KT 3X2000AL PLUG-IN LENGTH	52
TA1600TC3	KT 3X1600AL TEE ON EDGE	67	KTA2000ED4403	KT 4X2000AL PLUG-IN LENGTH 4M	52
TA1600TC4	KT 4X1600AL TEE ON EDGE	67			

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
	KT 5X2000AL PLUG-IN LENGTH 2M	52	KTA2000ET320	KT 3X2000AL FEEDER LENGTH 2M	52
	KT 1X2000AL PLUG-IN LENGTH	52	KTA2000ET32B	KT 3X2000AL FEEDER LENGTH	52
	KT 2X2000AL PLUG-IN LENGTH	52	KTA2000ET32C	KT 3X2000AL FEEDER LENGTH	52
	KT 1X2000AL PLUG-IN LENGTH	52	KTA2000ET33D	KT 3X2000AL FEEDER LENGTH	52
	KT 3X2000AL PLUG-IN LENGTH	52	KTA2000ET33E	KT 3X2000AL FEEDER LENGTH	52
	KT 5X2000AL PLUG-IN LENGTH 4M	52	KTA2000ET33F	KT 3X2000AL FEEDER LENGTH	52
	KT 1X2000AL PLUG-IN LENGTH 2M	52	KTA2000ET340	KT 3X2000AL FEEDER LENGTH 4M	52
	KT 5X2000AL PLUG-IN LENGTH 2M	52	KTA2000ET41A	KT 4X2000AL FEEDER LENGTH	52
	KT 1X2000AL PLUG-IN LENGTH	52	KTA2000ET420	KT 4X2000AL FEEDER LENGTH 2M	52
	KT 2X2000AL PLUG-IN LENGTH	52	KTA2000ET42B	KT 4X2000AL FEEDER LENGTH	52
	KT 1X2000AL PLUG-IN LENGTH	52	KTA2000ET42C	KT 4X2000AL FEEDER LENGTH	52
	KT 3X2000AL PLUG-IN LENGTH	52	KTA2000ET420	KT 4X2000AL FEEDER LENGTH	52
	KT 5X2000AL PLUG-IN LENGTH 4M	52	KTA2000ET43E	KT 4X2000AL FEEDER LENGTH	52
KTA2000EH320	KT 3X2000AL KH PLUG-IN LENGTH 2M	55	KTA2000ET43F	KT 4X2000AL FEEDER LENGTH	52
KTA2000EH340	KT 3X2000AL KH PLUG-IN LENGTH 4M	55	KTA2000ET440	KT 4X2000AL FEEDER LENGTH 4M	52
KTA2000EH420	KT 4X2000AL KH PLUG-IN LENGTH 2M	55	KTA2000ET51A	KT 5X2000AL FEEDER LENGTH	52
KTA2000EH440	KT 4X2000AL KH PLUG-IN LENGTH 4M	55	KTA2000ET520	KT 5X2000AL FEEDER LENGTH 2M	52
KTA2000EH520	KT 5X2000AL KH PLUG-IN LENGTH 2M	55	KTA2000ET52B	KT 5X2000AL FEEDER LENGTH	52
KTA2000EH540	KT 5X2000AL KH PLUG-IN LENGTH 4M	55	KTA2000ET52C	KT 5X2000AL FEEDER LENGTH	52
KTA2000EL31	KT 3X2000AL FEED UNIT EL NOT	94	KTA2000ET52D	KT 5X2000AL FEEDER LENGTH	52
KTA2000EL31	KT 3X2000AL FEED UNIT EL N2	94	KTA2000ET53E	KT 5X2000AL FEEDER LENGTH	52
KTA2000EL33	KT 3X2000AL FEED UNIT EL N3	96	KTA2000ET53F	KT 5X2000AL FEEDER LENGTH	52
KTA2000EL33	KT 3X2000AL FEED UNIT EL N4	96	KTA2000ET540	KT 5X2000AL FEEDER LENGTH 4M	52
KTA2000EL35	KT 3X2000AL FEED UNIT EL N5	97	KTA2000ET71A	KT 5X2000AL FEEDER LENGTH	52
KTA2000EL41	KT 4X2000AL FEED UNIT EL N1	94	KTA2000ET71A	KT 5X2000AL FEEDER LENGTH 2M	52
KTA2000EL42	KT 4X2000AL FEED UNIT EL N2	94	KTA2000ET72B	KT 5X2000AL FEEDER LENGTH	52
KTA2000EL43	KT 4X2000AL FEED UNIT EL N3	96	KTA2000ET72C	KT 5X2000AL FEEDER LENGTH	52
KTA2000EL44	KT 4X2000AL FEED UNIT EL N4	96	KTA2000ET73D	KT 5X2000AL FEEDER LENGTH	52
KTA2000EL45	KT 4X2000AL FEED UNIT EL N5	97	KTA2000ET73E	KT 5X2000AL FEEDER LENGTH	52
KTA2000EL51	KT 5X2000AL FEED UNIT EL N1	94	KTA2000ET73F	KT 5X2000AL FEEDER LENGTH	52
KTA2000EL52	KT 5X2000AL FEED UNIT EL N2	94	KTA2000ET740	KT 5X2000AL FEEDER LENGTH 4M	52
KTA2000EL53	KT 5X2000AL FEED UNIT EL N3	96	KTA2000FC3A	KT 3X2000AL EDGEWISE ELBOW	74
KTA2000EL54	KT 5X2000AL FEED UNIT EL N4	96	KTA2000FC3B	KT 3X2000AL EDGEWISE ELBOW	74
KTA2000EL55	KT 5X2000AL FEED UNIT EL N5	97	KTA2000FC3D	KT 3X2000AL EDGEWISE ELBOW	74
KTA2000EL71	KT 5X2000AL FEED UNIT EL N1	94	KTA2000FC3E	KT 3X2000AL EDGEWISE ELBOW	74
KTA2000EL72	KT 5X2000AL FEED UNIT EL N2	94	KTA2000FC4A	KT 4X2000AL EDGEWISE ELBOW	74
KTA2000EL73	KT 5X2000AL FEED UNIT EL N3	96	KTA2000FC4B	KT 4X2000AL EDGEWISE ELBOW	74
KTA2000EL74	KT 5X2000AL FEED UNIT EL N4	96	KTA2000FC4D	KT 4X2000AL EDGEWISE ELBOW	74
KTA2000EL75	KT 5X2000AL FEED UNIT EL N5	97	KTA2000FC4E	KT 4X2000AL EDGEWISE ELBOW	74
KTA2000ER31	KT 3X2000AL FEED UNIT ER N1	80	KTA2000FC5A	KT 5X2000AL EDGEWISE ELBOW	74
KTA2000ER32	KT 3X2000AL FEED UNIT ER N2	80	KTA2000FC5B	KT 5X2000AL EDGEWISE ELBOW	74
KTA2000ER33	KT 3X2000AL FEED UNIT ER N3	81	KTA2000FC5D	KT 5X2000AL EDGEWISE ELBOW	74
KTA2000ER34	KT 3X2000AL FEED UNIT ER N4	81	KTA2000FC5E	KT 5X2000AL EDGEWISE ELBOW	74
KTA2000ER35	KT 3X2000AL FEED UNIT ER N5	82	KTA2000FC7A	KT 5X2000AL EDGEWISE ELBOW	74
KTA2000ER36	KT 3X2000AL FEED UNIT ER N6	82	KTA2000FC7B	KT 5X2000AL EDGEWISE ELBOW	74
KTA2000ER37	KT 3X2000AL FEED UNIT ER N7	86	KTA2000FC7D	KT 5X2000AL EDGEWISE ELBOW	74
KTA2000ER41	KT 4X2000AL FEED UNIT ER N1	80	KTA2000FC7E	KT 5X2000AL EDGEWISE ELBOW	74
KTA2000ER42	KT 4X2000AL FEED UNIT ER N2	80	KTA2000FP3A1	KT 3X2000AL FLAT ELBOW N1 FIRE	73
KTA2000ER43	KT 4X2000AL FEED UNIT ER N3	81	KTA2000FP3A2	KT 3X2000AL FLAT ELBOW N2 FIRE	73
KTA2000ER44	KT 4X2000AL FEED UNIT ER N4	81	KTA2000FP3B1	KT 3X2000AL FLAT ELBOW N1 FIRE	73
KTA2000ER45	KT 4X2000AL FEED UNIT ER N5	82	KTA2000FP3B2	KT 3X2000AL FLAT ELBOW N2 FIRE	73
KTA2000ER46	KT 4X2000AL FEED UNIT ER N6	82	KTA2000FP3D1	KT 3X2000AL FLAT ELBOW N1 FIRE	73
KTA2000ER47	KT 4X2000AL FEED UNIT ER N7	86	KTA2000FP3D2	KT 3X2000AL FLAT ELBOW N2 FIRE	73
KTA2000ER51	KT 5X2000AL FEED UNIT ER N1	80	KTA2000FP3E1	KT 3X2000AL FLAT ELBOW N1 FIRE	73
KTA2000ER52	KT 5X2000AL FEED UNIT ER N2	80	KTA2000FP3E2	KT 3X2000AL FLAT ELBOW N2 FIRE	73
KTA2000ER53	KT 5X2000AL FEED UNIT ER N3	81	KTA2000FP4A1	KT 4X2000AL FLAT ELBOW N1 FIRE	73
KTA2000ER54	KT 5X2000AL FEED UNIT ER N4	81	KTA2000FP4A2	KT 4X2000AL FLAT ELBOW N2 FIRE	73
KTA2000ER55	KT 5X2000AL FEED UNIT ER N5	82	KTA2000FP4B1	KT 4X2000AL FLAT ELBOW N1 FIRE	73
KTA2000ER56	KT 5X2000AL FEED UNIT ER N6	82	KTA2000FP4B2	KT 4X2000AL FLAT ELBOW N2 FIRE	73
KTA2000ER57	KT 5X2000AL FEED UNIT ER N7	86	KTA2000FP4D1	KT 4X2000AL FLAT ELBOW N1 FIRE	73
KTA2000ER71	KT 5X2000AL FEED UNIT ER N1	80	KTA2000FP4D2	KT 4X2000AL FLAT ELBOW N2 FIRE	73
KTA2000ER72	KT 5X2000AL FEED UNIT ER N2	80	KTA2000FP4E1	KT 4X2000AL FLAT ELBOW N1 FIRE	73
KTA2000ER73	KT 5X2000AL FEED UNIT ER N3	81	KTA2000FP4E2	KT 4X2000AL FLAT ELBOW N2 FIRE	73
KTA2000ER74	KT 5X2000AL FEED UNIT ER N4	81	KTA2000FP5A1	KT 5X2000AL FLAT ELBOW N1 FIRE	73
KTA2000ER75	KT 5X2000AL FEED UNIT ER N5	82	KTA2000FP5A2	KT 5X2000AL FLAT ELBOW N2 FIRE	73
KTA2000ER76	KT 5X2000AL FEED UNIT ER N6	82	KTA2000FP5B1	KT 5X2000AL FLAT ELBOW N1 FIRE	73
	LOT EN CORROLL EFFER LINUT ER ALF	86	KTA 2000EDED2	KT 5X2000AL FLAT ELBOW N2 FIRE	73
KTA2000ER77	KT 5X2000AL FEED UNIT ER N7	52	KTA2000FP5B2	RT 3AZOOOALT LAT LLBOW NZ TIKL	73

at. no.	Designations	Pages	Cat. no.	Designations	Page
TA2000FP5D2	KT 5X2000AL FLAT ELBOW N2 FIRE	73	KTA2000LP3E2	KT 3X2000AL FLAT ELBOW N2	62
TA2000FP5E1	KT 5X2000AL FLAT ELBOW N1 FIRE	73	KTA2000LP4A1	KT 4X2000AL FLAT ELBOW N1	62
TA2000FP5E2	KT 5X2000AL FLAT ELBOW N2 FIRE	73	KTA2000LP4A2	KT 4X2000AL FLAT ELBOW N2	62
TA2000FP7A1	KT 5X2000AL FLAT ELBOW N1 FIRE	73	KTA2000LP4B1	KT 4X2000AL FLAT ELBOW N1	62
TA2000FP7A2	KT 5X2000AL FLAT ELBOW N2 FIRE	73	KTA2000LP4B2	KT 4X2000AL FLAT ELBOW N2	62
TA2000FP7B1	KT 5X2000AL FLAT ELBOW N1 FIRE	73	KTA2000LP4C1	KT 4X2000AL FLAT ELBOW N1	63
TA2000FP7B2	KT 5X2000AL FLAT ELBOW N2 FIRE	73	KTA2000LP4C2	KT 4X2000AL FLAT ELBOW N2	63
TA2000FP7D1	KT 5X2000AL FLAT ELBOW N1 FIRE	73	KTA2000LP4D1	KT 4X2000AL FLAT ELBOW N1	62
TA2000FP7D2	KT 5X2000AL FLAT ELBOW N2 FIRE	73	KTA2000LP4D2	KT 4X2000AL FLAT ELBOW N2	62
TA2000FP7E1	KT 5X2000AL FLAT ELBOW N1 FIRE	73	KTA2000LP4E1	KT 4X2000AL FLAT ELBOW N1	62
TA2000FP7E2	KT 5X2000AL FLAT ELBOW N2 FIRE	73	KTA2000LP4E2	KT 4X2000AL FLAT ELBOW N2	62
TA2000FT31A	KT 3X2000AL FEEDER LENGTH FIRE	72	KTA2000LP5A1	KT 5X2000AL FLAT ELBOW N1	62
TA2000FT320	KT 3X2000AL FEEDER LENGTH FIRE 2M	72	KTA2000LP5A2	KT 5X2000AL FLAT ELBOW N2	62
TA2000FT32B	KT 3X2000AL FEEDER LENGTH FIRE	72	KTA2000LP5B1	KT 5X2000AL FLAT ELBOW N1	62
TA2000FT32C	KT 3X2000AL FEEDER LENGTH FIRE	72	KTA2000LP5B2	KT 5X2000AL FLAT ELBOW N2	62
TA2000FT33D	KT 3X2000AL FEEDER LENGTH FIRE	72	KTA2000LP5C1	KT 5X2000AL FLAT ELBOW N1	63
TA2000FT33E	KT 3X2000AL FEEDER LENGTH FIRE	72	KTA2000LP5C2	KT 5X2000AL FLAT ELBOW N2	63
TA2000FT33F	KT 3X2000AL FEEDER LENGTH FIRE	72	KTA2000LP5D1	KT 5X2000AL FLAT ELBOW N1	62
TA2000FT340	KT 3X2000AL FEEDER LENGTH FIRE 4M	72	KTA2000LP5D2	KT 5X2000AL FLAT ELBOW N2	62
TA2000FT41A	KT 4X2000AL FEEDER LENGTH FIRE	72	KTA2000LP5E1	KT 5X2000AL FLAT ELBOW N1	62
TA2000FT420	KT 4X2000AL FEEDER LENGTH FIRE 2M	72	KTA2000LP5E2	KT 5X2000AL FLAT ELBOW N2	62
TA2000FT42B	KT 4X2000AL FEEDER LENGTH FIRE	72	KTA2000LP7A1	KT 5X2000AL FLAT ELBOW N1	62
TA2000FT42C	KT 4X2000AL FEEDER LENGTH FIRE	72	KTA2000LP7A2	KT 5X2000AL FLAT ELBOW N2	62
TA2000FT43D	KT 4X2000AL FEEDER LENGTH FIRE	72	KTA2000LP7B1	KT 5X2000AL FLAT ELBOW N1	62
TA2000FT43E	KT 4X2000AL FEEDER LENGTH FIRE	72	KTA2000LP7B2	KT 5X2000AL FLAT ELBOW N2	62
TA2000FT43F	KT 4X2000AL FEEDER LENGTH FIRE	72	KTA2000LP7C1	KT 5X2000AL FLAT ELBOW N1	63
TA2000FT440	KT 4X2000AL FEEDER LENGTH FIRE 4M	72	KTA2000LP7C2	KT 5X2000AL FLAT ELBOW N2	63
TA2000FT51A	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000LP7D1	KT 5X2000AL FLAT ELBOW N1	62
TA2000FT520	KT 5X2000AL FEEDER LENGTH FIRE 2M	72	KTA2000LP7D2	KT 5X2000AL FLAT ELBOW N2	62
TA2000FT52B	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000LP7E1	KT 5X2000AL FLAT ELBOW N1	62
A2000FT52C	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000LP7E2	KT 5X2000AL FLAT ELBOW N2	62
A2000FT53D	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000SL31	KT 3X2000AL ISOLATOR UNIT INV	129
TA2000FT53E	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000SL41	KT 4X2000AL ISOLATOR UNIT INV	129
A2000FT53F	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000SL51	KT 5X2000AL ISOLATOR UNIT INV	129
A2000FT540	KT 5X2000AL FEEDER LENGTH FIRE 4M	72	KTA2000TC3	KT 3X2000AL TEE ON EDGE	67
A2000FT71A	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000TC4	KT 4X2000AL TEE ON EDGE	67
A2000FT720	KT 5X2000AL FEEDER LENGTH FIRE 2M	72	KTA2000TC5	KT 5X2000AL TEE ON EDGE	67
A2000FT72B	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000TC7	KT 5X2000AL TEE ON EDGE	67
TA2000FT72C	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000TN410	KT 4X2000AL NEUTRAL PERMUTA	58
TA2000FT73D	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000TP410	KT 4X2000AL PHASES PERMUTA	58
TA2000FT73E	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000TN610	KT 4X2000AL NEUTRAL PERMUTA	58
TA2000FT73E	KT 5X2000AL FEEDER LENGTH FIRE	72	KTA2000TN610	KT 4X2000AL PHASES PERMUTA	58
TA2000FT73F	KT 5X2000AL FEEDER LENGTH FIRE 4M	72	KTA20001P610	KT 3X2000AL FHASES FERMOTA KT 3X2000AL JUNCTION BLOC	60
TA2000F1740	KT 3X2000AL FEEDER LENGTH FIRE 4W	63	KTA20001A3	KT 4X2000AL JUNCTION BLOC	60
	KT 3X2000AL EDGEWISE ELBOW				
FA2000LC3B		63	KTA2000YA5	KT 5X2000AL JUNCTION BLOC	60
TA2000LC3D	KT 3X2000AL EDGEWISE ELBOW	63	KTA2000YA6	KT 4X2000AL JUNCTION BLOC	60
TA2000LC3E	KT 3X2000AL EDGEWISE ELBOW	63	KTA2000YA7	KT 5X2000AL FINE TERMINE TERMINE	60
TA2000LC4A	KT 4X2000AL EDGEWISE ELBOW	63	KTA2000ZC31	KT 3X2000AL EDGEWISE ZED N1	68
TA2000LC4B	KT 4X2000AL EDGEWISE ELBOW	63	KTA2000ZC32	KT 3X2000AL EDGEWISE ZED N2	68
FA2000LC4D	KT 4X2000AL EDGEWISE ELBOW	63	KTA2000ZC41	KT 4X2000AL EDGEWISE ZED N1	68
FA2000LC4E	KT 4X2000AL EDGEWISE ELBOW	63	KTA2000ZC42	KT 4X2000AL EDGEWISE ZED N2	68
FA2000LC5A	KT 5X2000AL EDGEWISE ELBOW	63	KTA2000ZC51	KT 5X2000AL EDGEWISE ZED N1	68
TA2000LC5B	KT 5X2000AL EDGEWISE ELBOW	63	KTA2000ZC52	KT 5X2000AL EDGEWISE ZED N2	68
A2000LC5D	KT 5X2000AL EDGEWISE ELBOW	63	KTA2000ZC71	KT 5X2000AL EDGEWISE ZED N1	68
A2000LC5E	KT 5X2000AL EDGEWISE ELBOW	63	KTA2000ZC72	KT 5X2000AL EDGEWISE ZED N2	68
A2000LC7A	KT 5X2000AL EDGEWISE ELBOW	63	KTA2000ZP3	KT 3X2000AL ZED ON FLAT	68
A2000LC7B	KT 5X2000AL EDGEWISE ELBOW	63	KTA2000ZP4	KT 4X2000AL ZED ON FLAT	68
A2000LC7D	KT 5X2000AL EDGEWISE ELBOW	63	KTA2000ZP5	KT 5X2000AL ZED ON FLAT	68
A2000LC7E	KT 5X2000AL EDGEWISE ELBOW	63	KTA2000ZP7	KT 5X2000AL ZED ON FLAT	68
A2000LP3A1		62			
TA2000LP3A2		62	KTA2500		
TA2000LP3B1	KT 3X2000AL FLAT ELBOW N1	62	KTA2500CP31	KT 3X2500AL FLAT EDGEWISE N1	70
TA2000LP3B2	KT 3X2000AL FLAT ELBOW N2	62	KTA2500CP32	KT 3X2500AL FLAT EDGEWISE N2	70
TA2000LP3C1	KT 3X2000AL FLAT ELBOW N1	63	KTA2500CP33	KT 3X2500AL FLAT EDGEWISE N3	70
TA2000LP3C2	KT 3X2000AL FLAT ELBOW N2	63	KTA2500CP34	KT 3X2500AL FLAT EDGEWISE N4	70
TA2000LP3D1	KT 3X2000AL FLAT ELBOW N1	62	KTA2500CP41	KT 4X2500AL FLAT EDGEWISE N1	70
TA2000LP3D2	KT 3X2000AL FLAT ELBOW N2	62	KTA2500CP42	KT 4X2500AL FLAT EDGEWISE N2	70

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
KTA2500CP44	KT 4X2500AL FLAT EDGEWISE N4	70	KTA2500EH540	KT 5X2500AL KH PLUG-IN LENGTH 4M	55
KTA2500CP44	KT 5X2500AL FLAT EDGEWISE N1	70	KTA2500EH620	KT 4X2500AL KH PLUG-IN LENGTH 4M	55
KTA2500CP51	KT 5X2500AL FLAT EDGEWISE N1	70	KTA2500EH620	KT 4X2500AL KH PLUG-IN LENGTH 2M	55
	KT 5X2500AL FLAT EDGEWISE N2	70	KTA2500EH720	KT 5X2500AL KH PLUG-IN LENGTH 4M	55
KTA2500CP53 KTA2500CP54				KT 5X2500AL KH PLUG-IN LENGTH 2M	
	KT 5X2500AL FLAT EDGEWISE N4	70	KTA2500EH740		55
KTA2500CP61	KT 4X2500AL FLAT EDGEWISE N1	70	KTA2500EL31	KT 3X2500AL FEED UNIT EL N1	94
KTA2500CP62	KT 4X2500AL FLAT EDGEWISE N2	70	KTA2500EL32	KT 3X2500AL FEED UNIT EL N2	94
KTA2500CP63	KT 4X2500AL FLAT EDGEWISE N3	70	KTA2500EL33	KT 3X2500AL FEED UNIT EL N3	96
KTA2500CP64	KT 4X2500AL FLAT EDGEWISE N4	70	KTA2500EL34	KT 3X2500AL FEED UNIT EL N4	96
KTA2500CP71	KT 5X2500AL FLAT EDGEWISE N1	70	KTA2500EL35	KT 3X2500AL FEED UNIT EL N5	97
KTA2500CP72	KT 5X2500AL FLAT EDGEWISE N2	70	KTA2500EL41	KT 4X2500AL FEED UNIT EL N1	94
KTA2500CP73	KT 5X2500AL FLAT EDGEWISE N3	70	KTA2500EL42	KT 4X2500AL FEED UNIT EL N2	94
KTA2500CP74	KT 5X2500AL FLAT EDGEWISE N4	70	KTA2500EL43	KT 4X2500AL FEED UNIT EL N3	96
KTA2500DB310	KT 3X2500AL EXPANSION UNIT	58	KTA2500EL44	KT 4X2500AL FEED UNIT EL N4	96
KTA2500DB410	KT 4X2500AL EXPANSION UNIT	58	KTA2500EL45	KT 4X2500AL FEED UNIT EL N5	97
KTA2500DB510	KT 5X2500AL EXPANSION UNIT	58	KTA2500EL51	KT 5X2500AL FEED UNIT EL N1	94
KTA2500DB610	KT 4X2500AL EXPANSION UNIT	58	KTA2500EL52	KT 5X2500AL FEED UNIT EL N2	94
KTA2500DB710	KT 5X2500AL EXPANSION UNIT	58	KTA2500EL53	KT 5X2500AL FEED UNIT EL N3	96
KTA2500EB320	KT 3X2500AL BOLT ON LENGTH 2M	54	KTA2500EL54	KT 5X2500AL FEED UNIT EL N4	96
KTA2500EB340	KT 3X2500AL BOLT ON LENGTH 4M	54	KTA2500EL55	KT 5X2500AL FEED UNIT EL N5	97
KTA2500EB420	KT 4X2500AL BOLT ON LENGTH 2M	54	KTA2500EL61	KT 4X2500AL FEED UNIT EL N1	94
KTA2500EB440	KT 4X2500AL BOLT ON LENGTH 4M	54	KTA2500EL62	KT 4X2500AL FEED UNIT EL N2	94
KTA2500EB520	KT 5X2500AL BOLT ON LENGTH 2M	54	KTA2500EL63	KT 4X2500AL FEED UNIT EL N3	96
KTA2500EB540	KT 5X2500AL BOLT ON LENGTH 4M	54	KTA2500EL64	KT 4X2500AL FEED UNIT EL N4	96
KTA2500EB620	KT 4X2500AL BOLT ON LENGTH 2M	54	KTA2500EL65	KT 4X2500AL FEED UNIT EL N5	97
KTA2500EB640	KT 4X2500AL BOLT ON LENGTH 4M	54	KTA2500EL71	KT 5X2500AL FEED UNIT EL N1	94
KTA2500EB720	KT 5X2500AL BOLT ON LENGTH 2M	54	KTA2500EL72	KT 5X2500AL FEED UNIT EL N2	94
KTA2500EB740	KT 5X2500AL BOLT ON LENGTH 4M	54	KTA2500EL73	KT 5X2500AL FEED UNIT EL N3	96
KTA2500ED3201	KT 1X2500AL PLUG-IN LENGTH 2M	52	KTA2500EL74	KT 5X2500AL FEED UNIT EL N4	96
	KT 3X2500AL PLUG-IN LENGTH 2M	52	KTA2500EL75	KT 5X2500AL FEED UNIT EL N5	97
	KT 1X2500AL PLUG-IN LENGTH	52	KTA2500ER31	KT 3X2500AL FEED UNIT ER N1	80
	KT 2X2500AL PLUG-IN LENGTH	52	KTA2500ER32	KT 3X2500AL FEED UNIT ER N2	80
	KT 1X2500AL PLUG-IN LENGTH	52	KTA2500ER33	KT 3X2500AL FEED UNIT ER N3	81
	KT 3X2500AL PLUG-IN LENGTH	52	KTA2500ER34	KT 3X2500AL FEED UNIT ER N4	81
	KT 3X2500AL PLUG-IN LENGTH 4M	52	KTA2500ER35	KT 3X2500AL FEED UNIT ER N5	82
	KT 1X2500AL PLUG-IN LENGTH 2M	52	KTA2500ER36	KT 3X2500AL FEED UNIT ER N6	82
	KT 4X2500AL PLUG-IN LENGTH 2M	52	KTA2500ER36	KT 3X2500ALT EED UNIT ER N7	86
	KT 1X2500AL PLUG-IN LENGTH ZW	52		KT 4X2500AL FEED UNIT ER N7	80
			KTA2500ER41		
	KT 2X2500AL PLUG-IN LENGTH	52	KTA2500ER42	KT 4X2500AL FEED UNIT ER N2	80
	KT 1X2500AL PLUG-IN LENGTH	52	KTA2500ER43	KT 4X2500AL FEED UNIT ER N3	81
	KT 3X2500AL PLUG-IN LENGTH	52	KTA2500ER44	KT 4X2500AL FEED UNIT ER N4	81
	KT 4X2500AL PLUG-IN LENGTH 4M	52	KTA2500ER45	KT 4X2500AL FEED UNIT ER N5	82
	KT 1X2500AL PLUG-IN LENGTH 2M	52	KTA2500ER46	KT 4X2500AL FEED UNIT ER N6	82
	KT 5X2500AL PLUG-IN LENGTH 2M	52	KTA2500ER47	KT 4X2500AL FEED UNIT ER N7	86
	KT 1X2500AL PLUG-IN LENGTH	52	KTA2500ER51	KT 5X2500AL FEED UNIT ER N1	80
	KT 2X2500AL PLUG-IN LENGTH	52	KTA2500ER52	KT 5X2500AL FEED UNIT ER N2	80
	KT 1X2500AL PLUG-IN LENGTH	52	KTA2500ER53	KT 5X2500AL FEED UNIT ER N3	81
	KT 3X2500AL PLUG-IN LENGTH	52	KTA2500ER54	KT 5X2500AL FEED UNIT ER N4	81
	KT 5X2500AL PLUG-IN LENGTH 4M	52	KTA2500ER55	KT 5X2500AL FEED UNIT ER N5	82
KTA2500ED6201	KT 1X2500AL PLUG-IN LENGTH 2M	52	KTA2500ER56	KT 5X2500AL FEED UNIT ER N6	82
KTA2500ED6203	KT 4X2500AL PLUG-IN LENGTH 2M	52	KTA2500ER57	KT 5X2500AL FEED UNIT ER N7	86
KTA2500ED6301	KT 1X2500AL PLUG-IN LENGTH	52	KTA2500ER61	KT 4X2500AL FEED UNIT ER N1	80
KTA2500ED6302	KT 2X2500AL PLUG-IN LENGTH	52	KTA2500ER62	KT 4X2500AL FEED UNIT ER N2	80
KTA2500ED6351	KT 1X2500AL PLUG-IN LENGTH	52	KTA2500ER63	KT 4X2500AL FEED UNIT ER N3	81
KTA2500ED6353	KT 3X2500AL PLUG-IN LENGTH	52	KTA2500ER64	KT 4X2500AL FEED UNIT ER N4	81
KTA2500ED6403	KT 4X2500AL PLUG-IN LENGTH 4M	52	KTA2500ER65	KT 4X2500AL FEED UNIT ER N5	82
KTA2500ED7201	KT 1X2500AL PLUG-IN LENGTH 2M	52	KTA2500ER66	KT 4X2500AL FEED UNIT ER N6	82
KTA2500ED7203	KT 5X2500AL PLUG-IN LENGTH 2M	52	KTA2500ER67	KT 4X2500AL FEED UNIT ER N7	86
KTA2500ED7301	KT 1X2500AL PLUG-IN LENGTH	52	KTA2500ER71	KT 5X2500AL FEED UNIT ER N1	80
	KT 2X2500AL PLUG-IN LENGTH	52	KTA2500ER72	KT 5X2500AL FEED UNIT ER N2	80
	KT 1X2500AL PLUG-IN LENGTH	52	KTA2500ER73	KT 5X2500AL FEED UNIT ER N3	81
	KT 3X2500AL PLUG-IN LENGTH	52	KTA2500ER74	KT 5X2500AL FEED UNIT ER N4	81
	KT 5X2500AL PLUG-IN LENGTH 4M	52	KTA2500ER75	KT 5X2500AL FEED UNIT ER N5	82
KTA2500EH320	KT 3X2500AL KH PLUG-IN LENGTH 2M	55	KTA2500ER76	KT 5X2500AL FEED UNIT ER N6	82
KTA2500EH340	KT 3X2500AL KH PLUG-IN LENGTH 4M	55	KTA2500ER77	KT 5X2500AL FEED UNIT ER N7	86
KTA2500EH340	KT 4X2500AL KH PLUG-IN LENGTH 4M	55	KTA2500ER77	KT 3X2500AL FEED ONIT ER N7	52
KTA2500EH440	KT 4X2500AL KH PLUG-IN LENGTH 4M	55	KTA2500ET31A	KT 3X2500AL FEEDER LENGTH 2M	52
					52
KTA2500EH520	KT 5X2500AL KH PLUG-IN LENGTH 2M	55	KTA2500ET32B	KT 3X2500AL FEEDER LENGTH	02

at. no.	Designations	Pages	Cat. no.	Designations	Pages
TA2500ET32C	KT 3X2500AL FEEDER LENGTH	52	KTA2500FP4B2	KT 4X2500AL FLAT ELBOW N2 FIRE	73
TA2500ET33D	KT 3X2500AL FEEDER LENGTH	52	KTA2500FP4D1	KT 4X2500AL FLAT ELBOW N1 FIRE	73
TA2500ET33E	KT 3X2500AL FEEDER LENGTH	52	KTA2500FP4D2	KT 4X2500AL FLAT ELBOW N2 FIRE	73
TA2500ET33F	KT 3X2500AL FEEDER LENGTH	52	KTA2500FP4E1	KT 4X2500AL FLAT ELBOW N1 FIRE	73
TA2500ET340	KT 3X2500AL FEEDER LENGTH 4M	52	KTA2500FP4E2	KT 4X2500AL FLAT ELBOW N2 FIRE	73
TA2500ET41A	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP5A1	KT 5X2500AL FLAT ELBOW N1 FIRE	73
TA2500ET420	KT 4X2500AL FEEDER LENGTH 2M	52	KTA2500FP5A2	KT 5X2500AL FLAT ELBOW N2 FIRE	73
TA2500ET42B	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP5B1	KT 5X2500AL FLAT ELBOW N1 FIRE	73
TA2500ET42C	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP5B2	KT 5X2500AL FLAT ELBOW N2 FIRE	73
TA2500ET43D	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP5D1	KT 5X2500AL FLAT ELBOW N1 FIRE	73
TA2500ET43E	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP5D2	KT 5X2500AL FLAT ELBOW N2 FIRE	73
TA2500ET43F	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP5E1	KT 5X2500AL FLAT ELBOW N1 FIRE	73
TA2500ET440	KT 4X2500AL FEEDER LENGTH 4M	52	KTA2500FP5E2	KT 5X2500AL FLAT ELBOW N2 FIRE	73
TA2500ET51A	KT 5X2500AL FEEDER LENGTH	52	KTA2500FP6A1	KT 4X2500AL FLAT ELBOW N1 FIRE	73
TA2500ET520	KT 5X2500AL FEEDER LENGTH 2M	52	KTA2500FP6A2	KT 4X2500AL FLAT ELBOW N2 FIRE	73
TA2500ET52B	KT 5X2500AL FEEDER LENGTH	52	KTA2500FP6B1	KT 4X2500AL FLAT ELBOW N1 FIRE	73
TA2500ET52B	KT 5X2500AL FEEDER LENGTH	52	KTA2500FP6B1	KT 4X2500AL FLAT ELBOW NT FIRE	73
FA2500ET53D	KT 5X2500AL FEEDER LENGTH	52	KTA2500FP6D1	KT 4X2500AL FLAT ELBOW N1 FIRE	73
A2500ET53E	KT 5X2500AL FEEDER LENGTH	52	KTA2500FP6D2	KT 4X2500AL FLAT ELBOW N2 FIRE	73
A2500ET53F	KT 5X2500AL FEEDER LENGTH	52	KTA2500FP6E1	KT 4X2500AL FLAT ELBOW N1 FIRE	73
A2500ET540	KT 5X2500AL FEEDER LENGTH 4M	52	KTA2500FP6E2	KT 4X2500AL FLAT ELBOW N2 FIRE	73
A2500ET61A	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP7A1	KT 5X2500AL FLAT ELBOW N1 FIRE	73
TA2500ET620	KT 4X2500AL FEEDER LENGTH 2M	52	KTA2500FP7A2	KT 5X2500AL FLAT ELBOW N2 FIRE	73
TA2500ET62B	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP7B1	KT 5X2500AL FLAT ELBOW N1 FIRE	73
A2500ET62C	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP7B2	KT 5X2500AL FLAT ELBOW N2 FIRE	73
TA2500ET63D	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP7D1	KT 5X2500AL FLAT ELBOW N1 FIRE	73
TA2500ET63E	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP7D2	KT 5X2500AL FLAT ELBOW N2 FIRE	73
TA2500ET63F	KT 4X2500AL FEEDER LENGTH	52	KTA2500FP7E1	KT 5X2500AL FLAT ELBOW N1 FIRE	73
A2500ET640	KT 4X2500AL FEEDER LENGTH 4M	52	KTA2500FP7E2	KT 5X2500AL FLAT ELBOW N2 FIRE	73
A2500ET71A	KT 5X2500AL FEEDER LENGTH	52	KTA2500FT31A	KT 3X2500AL FEEDER LENGTH FIRE	72
A2500ET720	KT 5X2500AL FEEDER LENGTH 2M	52	KTA2500FT320	KT 3X2500AL FEEDER LENGTH FIRE 2M	72
A2500ET72B	KT 5X2500AL FEEDER LENGTH	52	KTA2500FT32B	KT 3X2500AL FEEDER LENGTH FIRE	72
A2500ET72C	KT 5X2500AL FEEDER LENGTH	52	KTA2500FT32C	KT 3X2500AL FEEDER LENGTH FIRE	72
A2500ET720	KT 5X2500AL FEEDER LENGTH	52	KTA2500FT33D	KT 3X2500AL FEEDER LENGTH FIRE	72
TA2500ET73E	KT 5X2500AL FEEDER LENGTH	52	KTA2500FT33E		72
				KT 3X2500AL FEEDER LENGTH FIRE	72
FA2500ET73F	KT 5X2500AL FEEDER LENGTH	52	KTA2500FT33F	KT 3X2500AL FEEDER LENGTH FIRE	
TA2500ET740	KT 5X2500AL FEEDER LENGTH 4M	52	KTA2500FT340	KT 3X2500AL FEEDER LENGTH FIRE 4M	72
TA2500FC3A	KT 3X2500AL EDGEWISE ELBOW	74	KTA2500FT41A	KT 4X2500AL FEEDER LENGTH FIRE	72
TA2500FC3B	KT 3X2500AL EDGEWISE ELBOW	74	KTA2500FT420	KT 4X2500AL FEEDER LENGTH FIRE 2M	72
TA2500FC3D	KT 3X2500AL EDGEWISE ELBOW	74	KTA2500FT42B	KT 4X2500AL FEEDER LENGTH FIRE	72
TA2500FC3E	KT 3X2500AL EDGEWISE ELBOW	74	KTA2500FT42C	KT 4X2500AL FEEDER LENGTH FIRE	72
TA2500FC4A	KT 4X2500AL EDGEWISE ELBOW	74	KTA2500FT43D	KT 4X2500AL FEEDER LENGTH FIRE	72
TA2500FC4B	KT 4X2500AL EDGEWISE ELBOW	74	KTA2500FT43E	KT 4X2500AL FEEDER LENGTH FIRE	72
TA2500FC4D	KT 4X2500AL EDGEWISE ELBOW	74	KTA2500FT43F	KT 4X2500AL FEEDER LENGTH FIRE	72
TA2500FC4E	KT 4X2500AL EDGEWISE ELBOW	74	KTA2500FT440	KT 4X2500AL FEEDER LENGTH FIRE 4M	72
TA2500FC5A	KT 5X2500AL EDGEWISE ELBOW	74	KTA2500FT51A	KT 5X2500AL FEEDER LENGTH FIRE	72
TA2500FC5B	KT 5X2500AL EDGEWISE ELBOW	74	KTA2500FT520	KT 5X2500AL FEEDER LENGTH FIRE 2M	72
TA2500FC5D	KT 5X2500AL EDGEWISE ELBOW	74	KTA2500FT52B	KT 5X2500AL FEEDER LENGTH FIRE	72
TA2500FC5E	KT 5X2500AL EDGEWISE ELBOW	74	KTA2500FT52C	KT 5X2500AL FEEDER LENGTH FIRE	72
TA2500FC6A	KT 4X2500AL EDGEWISE ELBOW	74	KTA2500FT53D	KT 5X2500AL FEEDER LENGTH FIRE	72
TA2500FC6B	KT 4X2500AL EDGEWISE ELBOW	74	KTA2500FT53E	KT 5X2500AL FEEDER LENGTH FIRE	72
TA2500FC6D	KT 4X2500AL EDGEWISE ELBOW	74	KTA2500FT53F	KT 5X2500AL FEEDER LENGTH FIRE	72
TA2500FC6E	KT 4X2500AL EDGEWISE ELBOW	74	KTA2500FT540	KT 5X2500AL FEEDER LENGTH FIRE 4M	72
TA2500FC0E	KT 5X2500AL EDGEWISE ELBOW	74	KTA2500FT61A	KT 4X2500AL FEEDER LENGTH FIRE	72
			KTA2500FT61A	KT 4X2500AL FEEDER LENGTH FIRE 2M	72
FA2500FC7B	KT 5X2500AL EDGEWISE ELBOW	74			
A2500FC7D	KT 5X2500AL EDGEWISE ELBOW	74	KTA2500FT62B	KT 4X2500AL FEEDER LENGTH FIRE	72
A2500FC7E	KT 5X2500AL EDGEWISE ELBOW	74	KTA2500FT62C	KT 4X2500AL FEEDER LENGTH FIRE	72
A2500FP3A1	KT 3X2500AL FLAT ELBOW N1 FIRE	73	KTA2500FT63D	KT 4X2500AL FEEDER LENGTH FIRE	72
A2500FP3A2		73	KTA2500FT63E	KT 4X2500AL FEEDER LENGTH FIRE	72
TA2500FP3B1	KT 3X2500AL FLAT ELBOW N1 FIRE	73	KTA2500FT63F	KT 4X2500AL FEEDER LENGTH FIRE	72
TA2500FP3B2		73	KTA2500FT640	KT 4X2500AL FEEDER LENGTH FIRE 4M	72
TA2500FP3D1	KT 3X2500AL FLAT ELBOW N1 FIRE	73	KTA2500FT71A	KT 5X2500AL FEEDER LENGTH FIRE	72
TA2500FP3D2	KT 3X2500AL FLAT ELBOW N2 FIRE	73	KTA2500FT720	KT 5X2500AL FEEDER LENGTH FIRE 2M	72
TA2500FP3E1	KT 3X2500AL FLAT ELBOW N1 FIRE	73	KTA2500FT72B	KT 5X2500AL FEEDER LENGTH FIRE	72
TA2500FP3E2		73	KTA2500FT72C	KT 5X2500AL FEEDER LENGTH FIRE	72
TA2500FP4A1		73	KTA2500FT73D	KT 5X2500AL FEEDER LENGTH FIRE	72
	KT 4X2500AL FLAT ELBOW N2 FIRE	73	KTA2500FT73E	KT 5X2500AL FEEDER LENGTH FIRE	72
TA2500FP4A2	N I 4AZOUUAL FI AI FI BUW NZ FIRE		N IAZOUUT I / 3T		

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
KTA2500FT740	KT 5X2500AL FEEDER LENGTH FIRE 4M	72	KTA2500LP7D2	KT 5X2500AL FLAT ELBOW N2	62
KTA2500LC3A	KT 3X2500AL EDGEWISE ELBOW	63	KTA2500LP7E1	KT 5X2500AL FLAT ELBOW N1	62
KTA2500LC3B	KT 3X2500AL EDGEWISE ELBOW	63	KTA2500LP7E2	KT 5X2500AL FLAT ELBOW N2	62
KTA2500LC3D	KT 3X2500AL EDGEWISE ELBOW	63	KTA2500RL61	KT 4X2500AL ISOLATOR UNIT INV VW R	130
KTA2500LC3E	KT 3X2500AL EDGEWISE ELBOW	63	KTA2500RL62	KT 4X2500AL ISOLATOR UNIT INV VW L	130
KTA2500LC4A	KT 4X2500AL EDGEWISE ELBOW	63	KTA2500RL71	KT 5X2500AL ISOLATOR UNIT INV VW R	130
KTA2500LC4B	KT 4X2500AL EDGEWISE ELBOW	63	KTA2500RL72	KT 5X2500AL ISOLATOR UNIT INV VW L	130
KTA2500LC4D	KT 4X2500AL EDGEWISE ELBOW	63	KTA2500SL31	KT 3X2500AL ISOLATOR UNIT INV	129
KTA2500LC4E	KT 4X2500AL EDGEWISE ELBOW	63	KTA2500SL41	KT 4X2500AL ISOLATOR UNIT INV	129
KTA2500LC5A	KT 5X2500AL EDGEWISE ELBOW	63	KTA2500SL51	KT 5X2500AL ISOLATOR UNIT INV	129
KTA2500LC5B	KT 5X2500AL EDGEWISE ELBOW	63	KTA2500TC3	KT 3X2500AL TEE ON EDGE	67
KTA2500LC5D	KT 5X2500AL EDGEWISE ELBOW	63	KTA2500TC4	KT 4X2500AL TEE ON EDGE	67
KTA2500LC5E	KT 5X2500AL EDGEWISE ELBOW	63	KTA2500TC5	KT 5X2500AL TEE ON EDGE	67
KTA2500LC6A	KT 4X2500AL EDGEWISE ELBOW	63	KTA2500TC6	KT 4X2500AL TEE ON EDGE	67
KTA2500LC6B	KT 4X2500AL EDGEWISE ELBOW	63	KTA2500TC7	KT 5X2500AL TEE ON EDGE	67
KTA2500LC6D	KT 4X2500AL EDGEWISE ELBOW	63	KTA2500TN410	KT 4X2500AL NEUTRAL PERMUTA	58
KTA2500LC6E	KT 4X2500AL EDGEWISE ELBOW	63	KTA2500TN610	KT 4X2500AL NEUTRAL PERMUTA	58
KTA2500LC7A	KT 5X2500AL EDGEWISE ELBOW	63	KTA2500TP410	KT 4X2500AL PHASES PERMUTA	58
KTA2500LC7B	KT 5X2500AL EDGEWISE ELBOW	63	KTA2500TP610	KT 4X2500AL PHASES PERMUTA	58
KTA2500LC7D	KT 5X2500AL EDGEWISE ELBOW	63	KTA2500YA3	KT 3X2500AL JUNCTION BLOC	60
KTA2500LC7E	KT 5X2500AL EDGEWISE ELBOW	63	KTA2500YA4	KT 4X2500AL JUNCTION BLOC	60
KTA2500LP3A1	KT 3X2500AL FLAT ELBOW N1	62	KTA2500YA5	KT 5X2500AL JUNCTION BLOC	60
KTA2500LP3A2	KT 3X2500AL FLAT ELBOW N2	62	KTA2500YA6	KT 4X2500AL JUNCTION BLOC	60
KTA2500LP3B1	KT 3X2500AL FLAT ELBOW N1	62	KTA2500YA7	KT 5X2500AL JUNCTION BLOC	60
KTA2500LP3B2	KT 3X2500AL FLAT ELBOW N2	62	KTA2500ZC31	KT 3X2500AL EDGEWISE ZED N1	68
KTA2500LP3C1	KT 3X2500AL FLAT ELBOW N1	63	KTA2500ZC32	KT 3X2500AL EDGEWISE ZED N2	68
KTA2500LP3C2	KT 3X2500AL FLAT ELBOW N2	63	KTA2500ZC41	KT 4X2500AL EDGEWISE ZED N1	68
KTA2500LP3D1	KT 3X2500AL FLAT ELBOW N1	62	KTA2500ZC42	KT 4X2500AL EDGEWISE ZED N2	68
KTA2500LP3D2	KT 3X2500AL FLAT ELBOW N2	62	KTA2500ZC51	KT 5X2500AL EDGEWISE ZED N1	68
KTA2500LP3E1	KT 3X2500AL FLAT ELBOW N1	62	KTA2500ZC52	KT 5X2500AL EDGEWISE ZED N2	68
KTA2500LP3E2	KT 3X2500AL FLAT ELBOW N2	62	KTA2500ZC61	KT 4X2500AL EDGEWISE ZED N1	68
KTA2500LP4A1	KT 4X2500AL FLAT ELBOW N1	62	KTA2500ZC62	KT 4X2500AL EDGEWISE ZED N2	68
KTA2500LP4A2	KT 4X2500AL FLAT ELBOW N2	62	KTA2500ZC71	KT 5X2500AL EDGEWISE ZED N1	68
KTA2500LP4B1	KT 4X2500AL FLAT ELBOW N1	62	KTA2500ZC72	KT 5X2500AL EDGEWISE ZED N2	68
KTA2500LP4B2	KT 4X2500AL FLAT ELBOW N2	62	KTA2500ZP3	KT 3X2500AL ZED ON FLAT	68
KTA2500LP4C1	KT 4X2500AL FLAT ELBOW N1	63	KTA2500ZP4	KT 4X2500AL ZED ON FLAT	68
KTA2500LP4C2	KT 4X2500AL FLAT ELBOW N2	63	KTA2500ZP5	KT 5X2500AL ZED ON FLAT	68
KTA2500LP4D1	KT 4X2500AL FLAT ELBOW N1	62	KTA2500ZP6	KT 5X2500AL ZED ON FLAT	68
KTA2500LP4D2	KT 4X2500AL FLAT ELBOW N2	62	KTA2500ZP7	KT 5X2500AL ZED ON FLAT	68
KTA2500LP4E1	KT 4X2500AL FLAT ELBOW N1	62			
KTA2500LP4E2	KT 4X2500AL FLAT ELBOW N2	62	KTA3200		
KTA2500LP5A1	KT 5X2500AL FLAT ELBOW N1	62	KTA3200CP31	KT 3X3200AL FLAT EDGEWISE N1	70
KTA2500LP5A2	KT 5X2500AL FLAT ELBOW N2	62	KTA3200CP32	KT 3X3200AL FLAT EDGEWISE N2	70
KTA2500LP5B1	KT 5X2500AL FLAT ELBOW N1	62	KTA3200CP33	KT 3X3200AL FLAT EDGEWISE N3	70
KTA2500LP5B2	KT 5X2500AL FLAT ELBOW N2	62	KTA3200CP34	KT 3X3200AL FLAT EDGEWISE N4	70
KTA2500LP5C1	KT 5X2500AL FLAT ELBOW N1	63	KTA3200CP41	KT 4X3200AL FLAT EDGEWISE N1	70
KTA2500LP5C2	KT 5X2500AL FLAT ELBOW N2	63	KTA3200CP42	KT 4X3200AL FLAT EDGEWISE N2	70
KTA2500LP5D1	KT 5X2500AL FLAT ELBOW N1	62	KTA3200CP43	KT 4X3200AL FLAT EDGEWISE N3	70
KTA2500LP5D2	KT 5X2500AL FLAT ELBOW N2	62	KTA3200CP44	KT 4X3200AL FLAT EDGEWISE N4	70
KTA2500LP5E1	KT 5X2500AL FLAT ELBOW N1	62	KTA3200CP51	KT 5X3200AL FLAT EDGEWISE N1	70
KTA2500LP5E2	KT 5X2500AL FLAT ELBOW N2	62	KTA3200CP52	KT 5X3200AL FLAT EDGEWISE N2	70
KTA2500LP6A1	KT 4X2500AL FLAT ELBOW N1	62	KTA3200CP53	KT 5X3200AL FLAT EDGEWISE N3	70
KTA2500LP6A2	KT 4X2500AL FLAT ELBOW N2	62	KTA3200CP54	KT 5X3200AL FLAT EDGEWISE N4	70
KTA2500LP6B1	KT 4X2500AL FLAT ELBOW N1	62	KTA3200CP61	KT 4X3200AL FLAT EDGEWISE N1	70
KTA2500LP6B2		62	KTA3200CP62	KT 4X3200AL FLAT EDGEWISE N2	70
KTA2500LP6C1	KT 4X2500AL FLAT ELBOW N1	63	KTA3200CP63	KT 4X3200AL FLAT EDGEWISE N3	70
KTA2500LP6C2	KT 4X2500AL FLAT ELBOW N2	63	KTA3200CP64	KT 4X3200AL FLAT EDGEWISE N4	70
KTA2500LP6D1	KT 4X2500AL FLAT ELBOW N1	62	KTA3200CP71	KT 5X3200AL FLAT EDGEWISE N1	70
KTA2500LP6D2	KT 4X2500AL FLAT ELBOW N2	62	KTA3200CP72	KT 5X3200AL FLAT EDGEWISE N2	70
KTA2500LP6E1	KT 4X2500AL FLAT ELBOW N1	62	KTA3200CP73	KT 5X3200AL FLAT EDGEWISE N3	70
KTA2500LP6E2	KT 4X2500AL FLAT ELBOW N2	62	KTA3200CP74	KT 5X3200AL FLAT EDGEWISE N4	70
KTA2500LP7A1	KT 5X2500AL FLAT ELBOW N1	62	KTA3200DB310	KT 3X3200AL EXPANSION UNIT	58
KTA2500LP7A2	KT 5X2500AL FLAT ELBOW N2	62	KTA3200DB410	KT 4X3200AL EXPANSION UNIT	58
KTA2500LP7B1	KT 5X2500AL FLAT ELBOW N1	62	KTA3200DB510	KT 5X3200AL EXPANSION UNIT	58
KTA2500LP7B2	KT 5X2500AL FLAT ELBOW N2	62	KTA3200DB610	KT 4X3200AL EXPANSION UNIT	58
KTA2500LP7C1	KT 5X2500AL FLAT ELBOW N1	63	KTA3200DB710	KT 5X3200AL EXPANSION UNIT	58
KTA2500LP7C2	KT 5X2500AL FLAT ELBOW N2	63	KTA3200EB320	KT 3X3200AL BOLT ON LENGTH 2M	54
KTA2500LP7D1	KT 5X2500AL FLAT ELBOW N1	62	KTA3200EB340	KT 3X3200AL BOLT ON LENGTH 4M	54

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
TA3200EB420	KT 4X3200AL BOLT ON LENGTH 2M	54	KTA3200EL61	KT 4X3200AL FEED UNIT EL N1	94
TA3200EB440	KT 4X3200AL BOLT ON LENGTH 4M	54	KTA3200EL62	KT 4X3200AL FEED UNIT EL N2	94
TA3200EB520	KT 5X3200AL BOLT ON LENGTH 2M	54	KTA3200EL63	KT 4X3200AL FEED UNIT EL N3	96
TA3200EB540	KT 5X3200AL BOLT ON LENGTH 4M	54	KTA3200EL64	KT 4X3200AL FEED UNIT EL N4	96
TA3200EB620	KT 4X3200AL BOLT ON LENGTH 2M	54	KTA3200EL65	KT 4X3200AL FEED UNIT EL N5	97
TA3200EB640	KT 4X3200AL BOLT ON LENGTH 4M	54	KTA3200EL71	KT 5X3200AL FEED UNIT EL N1	94
TA3200EB720	KT 5X3200AL BOLT ON LENGTH 2M	54	KTA3200EL72	KT 5X3200AL FEED UNIT EL N2	94
TA3200EB740	KT 5X3200AL BOLT ON LENGTH 4M	54	KTA3200EL73	KT 5X3200AL FEED UNIT EL N3	96
	KT 1X3200AL PLUG-IN LENGTH 2M	52	KTA3200EL74	KT 5X3200AL FEED UNIT EL N4	96
	KT 3X3200AL PLUG-IN LENGTH 2M	52	KTA3200EL75	KT 5X3200AL FEED UNIT EL N5	97
	KT 1X3200AL PLUG-IN LENGTH	52	KTA3200ER31	KT 3X3200AL FEED UNIT ER N1	80
	KT 2X3200AL PLUG-IN LENGTH	52	KTA3200ER31	KT 3X3200AL FEED UNIT ER N2	80
	KT 1X3200AL PLUG-IN LENGTH	52			81
			KTA3200ER33	KT 3X3200AL FEED UNIT ER N3	
	KT 3X3200AL PLUG-IN LENGTH	52	KTA3200ER34	KT 3X3200AL FEED UNIT ER N4	81
	KT 3X3200AL PLUG-IN LENGTH 4M	52	KTA3200ER35	KT 3X3200AL FEED UNIT ER N5	82
	KT 1X3200AL PLUG-IN LENGTH 2M	52	KTA3200ER36	KT 3X3200AL FEED UNIT ER N6	82
TA3200ED4203	KT 4X3200AL PLUG-IN LENGTH 2M	52	KTA3200ER37	KT 3X3200AL FEED UNIT ER N7	86
TA3200ED4301	KT 1X3200AL PLUG-IN LENGTH	52	KTA3200ER41	KT 4X3200AL FEED UNIT ER N1	80
TA3200ED4302	KT 2X3200AL PLUG-IN LENGTH	52	KTA3200ER42	KT 4X3200AL FEED UNIT ER N2	80
TA3200ED4351	KT 1X3200AL PLUG-IN LENGTH	52	KTA3200ER43	KT 4X3200AL FEED UNIT ER N3	81
	KT 3X3200AL PLUG-IN LENGTH	52	KTA3200ER44	KT 4X3200AL FEED UNIT ER N4	81
	KT 4X3200AL PLUG-IN LENGTH 4M	52	KTA3200ER45	KT 4X3200AL FEED UNIT ER N5	82
	KT 1X3200AL PLUG-IN LENGTH 4M	52	KTA3200ER45	KT 4X3200AL FEED UNIT ER N6	82
	KT 5X3200AL PLUG-IN LENGTH 2M	52	KTA3200ER47	KT 4X3200AL FEED UNIT ER NA	86
	KT 1X3200AL PLUG-IN LENGTH	52	KTA3200ER51	KT 5X3200AL FEED UNIT ER N1	80
	KT 2X3200AL PLUG-IN LENGTH	52	KTA3200ER52	KT 5X3200AL FEED UNIT ER N2	80
	KT 1X3200AL PLUG-IN LENGTH	52	KTA3200ER53	KT 5X3200AL FEED UNIT ER N3	81
TA3200ED5353	KT 3X3200AL PLUG-IN LENGTH	52	KTA3200ER54	KT 5X3200AL FEED UNIT ER N4	81
TA3200ED5403	KT 5X3200AL PLUG-IN LENGTH 4M	52	KTA3200ER55	KT 5X3200AL FEED UNIT ER N5	82
TA3200ED6201	KT 1X3200AL PLUG-IN LENGTH 2M	52	KTA3200ER56	KT 5X3200AL FEED UNIT ER N6	82
TA3200ED6203	KT 4X3200AL PLUG-IN LENGTH 2M	52	KTA3200ER57	KT 5X3200AL FEED UNIT ER N7	86
TA3200ED6301	KT 1X3200AL PLUG-IN LENGTH	52	KTA3200ER61	KT 4X3200AL FEED UNIT ER N1	80
	KT 2X3200AL PLUG-IN LENGTH	52	KTA3200ER62	KT 4X3200AL FEED UNIT ER N2	80
	KT 1X3200AL PLUG-IN LENGTH	52	KTA3200ER63	KT 4X3200AL FEED UNIT ER N3	81
	KT 3X3200AL PLUG-IN LENGTH	52	KTA3200ER63	KT 4X3200AL FEED UNIT ER N4	81
	KT 4X3200AL PLUG-IN LENGTH 4M	52	KTA3200ER65	KT 4X3200AL FEED UNIT ER N5	82
	KT 1X3200AL PLUG-IN LENGTH 2M	52	KTA3200ER66	KT 4X3200AL FEED UNIT ER N6	82
	KT 5X3200AL PLUG-IN LENGTH 2M	52	KTA3200ER67	KT 4X3200AL FEED UNIT ER N7	86
TA3200ED7301	KT 1X3200AL PLUG-IN LENGTH	52	KTA3200ER71	KT 5X3200AL FEED UNIT ER N1	80
TA3200ED7302	KT 2X3200AL PLUG-IN LENGTH	52	KTA3200ER72	KT 5X3200AL FEED UNIT ER N2	80
TA3200ED7351	KT 1X3200AL PLUG-IN LENGTH	52	KTA3200ER73	KT 5X3200AL FEED UNIT ER N3	81
TA3200ED7353	KT 3X3200AL PLUG-IN LENGTH	52	KTA3200ER74	KT 5X3200AL FEED UNIT ER N4	81
TA3200ED7403	KT 5X3200AL PLUG-IN LENGTH 4M	52	KTA3200ER75	KT 5X3200AL FEED UNIT ER N5	82
TA3200EH320	KT 3X3200AL KH PLUG-IN LENGTH 2M	55	KTA3200ER76	KT 5X3200AL FEED UNIT ER N6	82
TA3200EH340	KT 3X3200AL KH PLUG-IN LENGTH 4M	55	KTA3200ER77	KT 5X3200AL FEED UNIT ER N7	86
TA3200EH420	KT 4X3200AL KH PLUG-IN LENGTH 2M	55	KTA3200ET71A	KT 3X3200AL FEEDER LENGTH	52
TA3200EH420	KT 4X3200AL KH PLUG-IN LENGTH 4M	55	KTA3200ET3TA	KT 3X3200AL FEEDER LENGTH 2M	52
TA3200EH440		55 55			52
	KT 5X3200AL KH PLUG-IN LENGTH 2M		KTA3200ET32B	KT 3X3200AL FEEDER LENGTH	
TA3200EH540	KT 5X3200AL KH PLUG-IN LENGTH 4M	55	KTA3200ET32C	KT 3X3200AL FEEDER LENGTH	52
TA3200EH620	KT 4X3200AL KH PLUG-IN LENGTH 2M	55	KTA3200ET33D	KT 3X3200AL FEEDER LENGTH	52
TA3200EH640	KT 4X3200AL KH PLUG-IN LENGTH 4M	55	KTA3200ET33E	KT 3X3200AL FEEDER LENGTH	52
TA3200EH720	KT 5X3200AL KH PLUG-IN LENGTH 2M	55	KTA3200ET33F	KT 3X3200AL FEEDER LENGTH	52
TA3200EH740	KT 5X3200AL KH PLUG-IN LENGTH 4M	55	KTA3200ET340	KT 3X3200AL FEEDER LENGTH 4M	52
TA3200EL31	KT 3X3200AL FEED UNIT EL N1	94	KTA3200ET41A	KT 4X3200AL FEEDER LENGTH	52
TA3200EL32	KT 3X3200AL FEED UNIT EL N2	94	KTA3200ET420	KT 4X3200AL FEEDER LENGTH 2M	52
TA3200EL33	KT 3X3200AL FEED UNIT EL N3	96	KTA3200ET42B	KT 4X3200AL FEEDER LENGTH	52
TA3200EL34	KT 3X3200AL FEED UNIT EL N4	96	KTA3200ET42C	KT 4X3200AL FEEDER LENGTH	52
TA3200EL35	KT 3X3200AL FEED UNIT EL N5	97	KTA3200ET43D	KT 4X3200AL FEEDER LENGTH	52
TA3200EL33	KT 4X3200AL FEED UNIT EL N1	94	KTA3200ET43E	KT 4X3200AL FEEDER LENGTH	52
					52
TA3200EL42	KT 4X3200AL FEED UNIT EL N2	94	KTA3200ET43F	KT 4X3200AL FEEDER LENGTH	
TA3200EL43	KT 4X3200AL FEED UNIT EL N3	96	KTA3200ET440	KT 4X3200AL FEEDER LENGTH 4M	52
TA3200EL44	KT 4X3200AL FEED UNIT EL N4	96	KTA3200ET51A	KT 5X3200AL FEEDER LENGTH	52
TA3200EL45	KT 4X3200AL FEED UNIT EL N5	97	KTA3200ET520	KT 5X3200AL FEEDER LENGTH 2M	52
TA3200EL51	KT 5X3200AL FEED UNIT EL N1	94	KTA3200ET52B	KT 5X3200AL FEEDER LENGTH	52
TA3200EL52	KT 5X3200AL FEED UNIT EL N2	94	KTA3200ET52C	KT 5X3200AL FEEDER LENGTH	52
TA3200EL53	KT 5X3200AL FEED UNIT EL N3	96	KTA3200ET53D	KT 5X3200AL FEEDER LENGTH	52
TA3200EL54	KT 5X3200AL FEED UNIT EL N4	96	KTA3200ET53E	KT 5X3200AL FEEDER LENGTH	52
	KT 5X3200AL FEED UNIT EL N5	97	KTA3200ET53F	KT 5X3200AL FEEDER LENGTH	52

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
KTA3200ET540	KT 5X3200AL FEEDER LENGTH 4M	52	KTA3200FP6E2	KT 4X3200AL FLAT ELBOW N2 FIRE	73
KTA3200ET640	KT 4X3200AL FEEDER LENGTH	52	KTA3200FP7A1	KT 5X3200AL FLAT ELBOW N2 FIRE	73
KTA3200ET61A	KT 4X3200AL FEEDER LENGTH	52	KTA3200FP7A1	KT 5X3200AL FLAT ELBOW NT FIRE	73
KTA3200ET62B	KT 4X3200AL FEEDER LENGTH	52	KTA3200FP7B1	KT 5X3200AL FLAT ELBOW N1 FIRE	73
KTA3200ET62B	KT 4X3200ALT EEDER LENGTH	52	KTA3200FP7B1	KT 5X3200AL FLAT ELBOW NY FIRE	73
		52	KTA3200FP7D1		73
KTA3200ET63D	KT 4X3200AL FEEDER LENGTH			KT 5X3200AL FLAT ELBOW N1 FIRE	73
KTA3200ET63E	KT 4X3200AL FEEDER LENGTH	52	KTA3200FP7D2	KT 5X3200AL FLAT ELBOW N2 FIRE	
KTA3200ET63F	KT 4X3200AL FEEDER LENGTH	52	KTA3200FP7E1	KT 5X3200AL FLAT ELBOW N1 FIRE	73
KTA3200ET640	KT 4X3200AL FEEDER LENGTH 4M	52	KTA3200FP7E2	KT 5X3200AL FLAT ELBOW N2 FIRE	73
KTA3200ET71A	KT 5X3200AL FEEDER LENGTH	52	KTA3200FT31A	KT 3X3200AL FEEDER LENGTH FIRE	72
KTA3200ET720	KT 5X3200AL FEEDER LENGTH 2M	52	KTA3200FT320	KT 3X3200AL FEEDER LENGTH FIRE 2M	72
KTA3200ET72B	KT 5X3200AL FEEDER LENGTH	52	KTA3200FT32B	KT 3X3200AL FEEDER LENGTH FIRE	72
KTA3200ET72C	KT 5X3200AL FEEDER LENGTH	52	KTA3200FT32C	KT 3X3200AL FEEDER LENGTH FIRE	72
KTA3200ET73D	KT 5X3200AL FEEDER LENGTH	52	KTA3200FT33D	KT 3X3200AL FEEDER LENGTH FIRE	72
KTA3200ET73E	KT 5X3200AL FEEDER LENGTH	52	KTA3200FT33E	KT 3X3200AL FEEDER LENGTH FIRE	72
KTA3200ET73F	KT 5X3200AL FEEDER LENGTH	52	KTA3200FT33F	KT 3X3200AL FEEDER LENGTH FIRE	72
KTA3200ET740	KT 5X3200AL FEEDER LENGTH 4M	52	KTA3200FT340	KT 3X3200AL FEEDER LENGTH FIRE 4M	72
KTA3200FC3A	KT 3X3200AL EDGEWISE ELBOW	74	KTA3200FT41A	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FC3B	KT 3X3200AL EDGEWISE ELBOW	74	KTA3200FT420	KT 4X3200AL FEEDER LENGTH FIRE 2M	72
KTA3200FC3D	KT 3X3200AL EDGEWISE ELBOW	74	KTA3200FT42B	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FC3E	KT 3X3200AL EDGEWISE ELBOW	74	KTA3200FT42C	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FC4A	KT 4X3200AL EDGEWISE ELBOW	74	KTA3200FT43D	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FC4B	KT 4X3200AL EDGEWISE ELBOW	74	KTA3200FT43E	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FC4D	KT 4X3200AL EDGEWISE ELBOW	74	KTA3200FT43F	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FC4E	KT 4X3200AL EDGEWISE ELBOW	74	KTA3200FT440	KT 4X3200AL FEEDER LENGTH FIRE 4M	72
KTA3200FC5A	KT 5X3200AL EDGEWISE ELBOW	74	KTA3200FT51A	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FC5B	KT 5X3200AL EDGEWISE ELBOW	74	KTA3200FT520	KT 5X3200AL FEEDER LENGTH FIRE 2M	72
KTA3200FC5D	KT 5X3200AL EDGEWISE ELBOW	74	KTA3200FT52B	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FC5E	KT 5X3200AL EDGEWISE ELBOW	74	KTA3200FT52C	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FC6A	KT 4X3200AL EDGEWISE ELBOW	74	KTA3200FT53D	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FC6B	KT 4X3200AL EDGEWISE ELBOW	74	KTA3200FT53E	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FC6D	KT 4X3200AL EDGEWISE ELBOW	74	KTA3200FT53F	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FC6E	KT 4X3200AL EDGEWISE ELBOW	74	KTA3200FT540	KT 5X3200AL FEEDER LENGTH FIRE 4M	72
KTA3200FC7A	KT 5X3200AL EDGEWISE ELBOW	74	KTA3200FT61A	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FC7B	KT 5X3200AL EDGEWISE ELBOW	74	KTA3200FT620	KT 4X3200AL FEEDER LENGTH FIRE 2M	72
KTA3200FC7D	KT 5X3200AL EDGEWISE ELBOW	74	KTA3200FT62B	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FC7E	KT 5X3200AL EDGEWISE ELBOW	74	KTA3200FT62C	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FP3A1	KT 3X3200AL FLAT ELBOW N1 FIRE	73	KTA3200FT63D	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FP3A2	KT 3X3200AL FLAT ELBOW N2 FIRE	73	KTA3200FT63E	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FP3B1	KT 3X3200AL FLAT ELBOW N1 FIRE	73	KTA3200FT63F	KT 4X3200AL FEEDER LENGTH FIRE	72
KTA3200FP3B2	KT 3X3200AL FLAT ELBOW N2 FIRE	73	KTA3200FT640	KT 4X3200AL FEEDER LENGTH FIRE 4M	72
KTA3200FP3D1	KT 3X3200AL FLAT ELBOW N1 FIRE	73	KTA3200FT71A	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FP3D2	KT 3X3200AL FLAT ELBOW N2 FIRE	73	KTA3200FT720	KT 5X3200AL FEEDER LENGTH FIRE 2M	72
KTA3200FP3E1	KT 3X3200AL FLAT ELBOW N1 FIRE	73	KTA3200FT72B	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FP3E2	KT 3X3200AL FLAT ELBOW N2 FIRE	73	KTA3200FT72C	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FP4A1	KT 4X3200AL FLAT ELBOW N1 FIRE	73	KTA3200FT73D	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FP4A2	KT 4X3200AL FLAT ELBOW N2 FIRE	73	KTA3200FT73E	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FP4B1	KT 4X3200AL FLAT ELBOW N1 FIRE	73	KTA3200FT73F	KT 5X3200AL FEEDER LENGTH FIRE	72
KTA3200FP4B1	KT 4X3200AL FLAT ELBOW N2 FIRE	73	KTA3200FT73F	KT 5X3200AL FEEDER LENGTH FIRE 4M	72
	KT 4X3200AL FLAT ELBOW N2 FIRE	73		KT 3X3200AL FEEDER LENGTH FIRE 4W	63
KTA3200FP4D1			KTA3200LC3A		
KTA3200FP4D2	KT 4X3200AL FLAT ELBOW N2 FIRE	73	KTA3200LC3B	KT 3X3200AL EDGEWISE ELBOW	63
KTA3200FP4E1	KT 4X3200AL FLAT ELBOW N1 FIRE	73	KTA3200LC3D	KT 3X3200AL EDGEWISE ELBOW	63
KTA3200FP4E2	KT 4X3200AL FLAT ELBOW N2 FIRE	73	KTA3200LC3E	KT 3X3200AL EDGEWISE ELBOW	63
KTA3200FP5A1	KT 5X3200AL FLAT ELBOW N1 FIRE	73	KTA3200LC4A	KT 4X3200AL EDGEWISE ELBOW	63
KTA3200FP5A2	KT 5X3200AL FLAT ELBOW N2 FIRE	73	KTA3200LC4B	KT 4X3200AL EDGEWISE ELBOW	63
KTA3200FP5B1	KT 5X3200AL FLAT ELBOW N1 FIRE	73	KTA3200LC4D	KT 4X3200AL EDGEWISE ELBOW	63
KTA3200FP5B2	KT 5X3200AL FLAT ELBOW N2 FIRE	73	KTA3200LC4E	KT 4X3200AL EDGEWISE ELBOW	63
KTA3200FP5D1	KT 5X3200AL FLAT ELBOW N1 FIRE	73	KTA3200LC5A	KT 5X3200AL EDGEWISE ELBOW	63
KTA3200FP5D2	KT 5X3200AL FLAT ELBOW N2 FIRE	73	KTA3200LC5B	KT 5X3200AL EDGEWISE ELBOW	63
KTA3200FP5E1	KT 5X3200AL FLAT ELBOW N1 FIRE	73	KTA3200LC5D	KT 5X3200AL EDGEWISE ELBOW	63
KTA3200FP5E2	KT 5X3200AL FLAT ELBOW N2 FIRE	73	KTA3200LC5E	KT 5X3200AL EDGEWISE ELBOW	63
KTA3200FP6A1	KT 4X3200AL FLAT ELBOW N1 FIRE	73	KTA3200LC6A	KT 4X3200AL EDGEWISE ELBOW	63
KTA3200FP6A2	KT 4X3200AL FLAT ELBOW N2 FIRE	73	KTA3200LC6B	KT 4X3200AL EDGEWISE ELBOW	63
KTA3200FP6B1	KT 4X3200AL FLAT ELBOW N1 FIRE	73	KTA3200LC6D	KT 4X3200AL EDGEWISE ELBOW	63
KTA3200FP6B2	KT 4X3200AL FLAT ELBOW N2 FIRE	73	KTA3200LC6E	KT 4X3200AL EDGEWISE ELBOW	63
KTA3200FP6D1	KT 4X3200AL FLAT ELBOW N1 FIRE	73	KTA3200LC7A	KT 5X3200AL EDGEWISE ELBOW	63
KTA3200FP6D2	KT 4X3200AL FLAT ELBOW N2 FIRE	73	KTA3200LC7B	KT 5X3200AL EDGEWISE ELBOW	63
KTA3200FP6E1	KT 4X3200AL FLAT ELBOW N1 FIRE	73	KTA3200LC7D	KT 5X3200AL EDGEWISE ELBOW	63
	KT 4X3200AL FLAT ELBOW N1 FIRE			KT 5X3200AL EDGEWISE ELBOW	

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
TA3200LC7E	KT 5X3200AL EDGEWISE ELBOW	63	KTA3200YA7	KT 5X3200AL JUNCTION BLOC	60
TA3200LP3A1	KT 3X3200AL FLAT ELBOW N1	62	KTA3200ZC31	KT 3X3200AL EDGEWISE ZED N1	68
TA3200LP3A2	KT 3X3200AL FLAT ELBOW N2	62	KTA3200ZC32	KT 3X3200AL EDGEWISE ZED N2	68
TA3200LP3B1	KT 3X3200AL FLAT ELBOW N1	62	KTA3200ZC41	KT 4X3200AL EDGEWISE ZED N1	68
TA3200LP3B2	KT 3X3200AL FLAT ELBOW N2	62	KTA3200ZC42	KT 4X3200AL EDGEWISE ZED N2	68
TA3200LP3C1	KT 3X3200AL FLAT ELBOW N1	63	KTA3200ZC51	KT 5X3200AL EDGEWISE ZED N1	68
	KT 3X3200AL FLAT ELBOW N2	63	KTA3200ZC52	KT 5X3200AL EDGEWISE ZED N2	68
	KT 3X3200AL FLAT ELBOW N1	62	KTA3200ZC61	KT 4X3200AL EDGEWISE ZED N1	68
TA3200LP3D2	KT 3X3200AL FLAT ELBOW N2	62	KTA3200ZC62	KT 4X3200AL EDGEWISE ZED N2	68
	KT 3X3200AL FLAT ELBOW N1	62	KTA3200ZC71	KT 5X3200AL EDGEWISE ZED N1	68
	KT 3X3200AL FLAT ELBOW N2	62	KTA3200ZC72	KT 5X3200AL EDGEWISE ZED N2	68
	KT 4X3200AL FLAT ELBOW N1	62	KTA3200ZP3	KT 3X3200AL ZED ON FLAT	68
	KT 4X3200AL FLAT ELBOW N2	62	KTA3200ZP4	KT 4X3200AL ZED ON FLAT	68
	KT 4X3200AL FLAT ELBOW N1	62	KTA3200ZP5	KT 5X3200AL ZED ON FLAT	68
	KT 4X3200AL FLAT ELBOW N2	62	KTA3200ZP6	KT 4X3200AL ZED ON FLAT	68
	KT 4X3200AL FLAT ELBOW N1	63	KTA3200ZP7	KT 4X3200AL ZED ON FLAT	68
	KT 4X3200AL FLAT ELBOW N2	63	K IA3200ZP I	KT 4X3200AL ZED ON FLAT	00
			I/TA 4000		
	KT 4X3200AL FLAT ELBOW N1	62	KTA4000		
	KT 4X3200AL FLAT ELBOW N2	62	KTA4000CP31	KT 3X4000AL FLAT EDGEWISE N1	70
	KT 4X3200AL FLAT ELBOW N1	62	KTA4000CP32	KT 3X4000AL FLAT EDGEWISE N2	70
	KT 4X3200AL FLAT ELBOW N2	62	KTA4000CP33	KT 3X4000AL FLAT EDGEWISE N3	70
	KT 5X3200AL FLAT ELBOW N1	62	KTA4000CP34	KT 3X4000AL FLAT EDGEWISE N4	70
	KT 5X3200AL FLAT ELBOW N2	62	KTA4000CP41	KT 4X4000AL FLAT EDGEWISE N1	70
	KT 5X3200AL FLAT ELBOW N1	62	KTA4000CP42	KT 4X4000AL FLAT EDGEWISE N2	70
	KT 5X3200AL FLAT ELBOW N2	62	KTA4000CP43	KT 4X4000AL FLAT EDGEWISE N3	70
TA3200LP5C1	KT 5X3200AL FLAT ELBOW N1	63	KTA4000CP44	KT 4X4000AL FLAT EDGEWISE N4	70
TA3200LP5C2	KT 5X3200AL FLAT ELBOW N2	63	KTA4000CP51	KT 5X4000AL FLAT EDGEWISE N1	70
TA3200LP5D1	KT 5X3200AL FLAT ELBOW N1	62	KTA4000CP52	KT 5X4000AL FLAT EDGEWISE N2	70
TA3200LP5D2	KT 5X3200AL FLAT ELBOW N2	62	KTA4000CP53	KT 5X4000AL FLAT EDGEWISE N3	70
TA3200LP5E1	KT 5X3200AL FLAT ELBOW N1	62	KTA4000CP54	KT 5X4000AL FLAT EDGEWISE N4	70
TA3200LP5E2	KT 5X3200AL FLAT ELBOW N2	62	KTA4000CP71	KT 5X4000AL FLAT EDGEWISE N1	70
TA3200LP6A1	KT 4X3200AL FLAT ELBOW N1	62	KTA4000CP72	KT 5X4000AL FLAT EDGEWISE N2	70
TA3200LP6A2	KT 4X3200AL FLAT ELBOW N2	62	KTA4000CP73	KT 5X4000ALT LAT EDGEWISE N3	70
	KT 4X3200AL FLAT ELBOW N1	62			70
	KT 4X3200AL FLAT ELBOW N2	62	KTA4000CP74	KT 5X4000AL FLAT EDGEWISE N4	
	KT 4X3200AL FLAT ELBOW N1	63	KTA4000DB310	KT 3X4000AL EXPANSION UNIT	58
	KT 4X3200AL FLAT ELBOW N2	63	KTA4000DB410	KT 4X4000AL EXPANSION UNIT	58
	KT 4X3200AL FLAT ELBOW N1	62	KTA4000DB510	KT 5X4000AL EXPANSION UNIT	58
	KT 4X3200AL FLAT ELBOW N2	62	KTA4000DB710	KT 5X4000AL EXPANSION UNIT	58
		62	KTA4000EB320	KT 3X4000AL BOLT ON LENGTH 2M	54
	KT 4X3200AL FLAT ELBOW N1		KTA4000EB340	KT 3X4000AL BOLT ON LENGTH 4M	54
	KT 4X3200AL FLAT ELBOW N2	62	KTA4000EB420	KT 4X4000AL BOLT ON LENGTH 2M	54
	KT 5X3200AL FLAT ELBOW N1	62	KTA4000EB440	KT 4X4000AL BOLT ON LENGTH 4M	54
	KT 5X3200AL FLAT ELBOW N2	62	KTA4000EB520	KT 5X4000AL BOLT ON LENGTH 2M	54
	KT 5X3200AL FLAT ELBOW N1	62	KTA4000EB540	KT 5X4000AL BOLT ON LENGTH 4M	54
	KT 5X3200AL FLAT ELBOW N2	62	KTA4000EB720	KT 5X4000AL BOLT ON LENGTH 2M	54
	KT 5X3200AL FLAT ELBOW N1	63	KTA4000EB740	KT 5X4000AL BOLT ON LENGTH 4M	54
	KT 5X3200AL FLAT ELBOW N2	63	KTA4000ED3201	KT 1X4000AL PLUG-IN LENGTH 2M	52
	KT 5X3200AL FLAT ELBOW N1	62	KTA4000ED3203	KT 3X4000AL PLUG-IN LENGTH 2M	52
	KT 5X3200AL FLAT ELBOW N2	62	KTA4000ED3301	KT 1X4000AL PLUG-IN LENGTH	52
TA3200LP7E1	KT 5X3200AL FLAT ELBOW N1	62		KT 2X4000AL PLUG-IN LENGTH	52
TA3200LP7E2	KT 5X3200AL FLAT ELBOW N2	62		KT 1X4000AL PLUG-IN LENGTH	52
TA3200SL31	KT 3X3200AL ISOLATOR UNIT NW	131		KT 3X4000AL PLUG-IN LENGTH	52
TA3200SL41	KT 4X3200AL ISOLATOR UNIT NW	131		KT 3X4000AL PLUG-IN LENGTH 4M	52
TA3200SL51	KT 5X3200AL ISOLATOR UNIT NW	131		KT 1X4000AL PLUG-IN LENGTH 2M	52
TA3200SL71	KT 5X3200AL ISOLATOR UNIT NW	131		KT 4X4000AL PLUG-IN LENGTH 2M	52
TA3200TC3	KT 3X3200AL TEE ON EDGE	67		KT 1X4000AL PLUG-IN LENGTH	52
	KT 4X3200AL TEE ON EDGE	67		KT 2X4000AL PLUG-IN LENGTH	52
	KT 5X3200AL TEE ON EDGE	67		KT 1X4000AL PLUG-IN LENGTH	52
	KT 4X3200AL TEE ON EDGE	67		KT 3X4000AL PLUG-IN LENGTH	
	KT 5X3200AL TEE ON EDGE	67			52 52
	KT 4X3200AL NEUTRAL PERMUTA	58		KT 4X4000AL PLUG-IN LENGTH 4M	
	KT 4X3200AL NEUTRAL PERMUTA	58		KT 1X4000AL PLUG-IN LENGTH 2M	52
				KT 5X4000AL PLUG-IN LENGTH 2M	52
	KT 4X3200AL PHASES PERMUTA	58		KT 1X4000AL PLUG-IN LENGTH	52
	KT 4X3200AL PHASES PERMUTA	58		KT 2X4000AL PLUG-IN LENGTH	52
	KT 3X3200AL JUNCTION BLOC	60		KT 1X4000AL PLUG-IN LENGTH	52
	KT 4X3200AL JUNCTION BLOC	60	KTA4000ED5353	KT 3X4000AL PLUG-IN LENGTH	52
TA3200YA5	KT 5X3200AL JUNCTION BLOC	60	KTA4000ED5403	KT 5X4000AL PLUG-IN LENGTH 4M	52
	KT 4X3200AL JUNCTION BLOC	60			

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
	KT 5X4000AL PLUG-IN LENGTH 2M	52	KTA4000ET41A	KT 4X4000AL FEEDER LENGTH	52
	KT 1X4000AL PLUG-IN LENGTH	52	KTA4000ET420	KT 4X4000AL FEEDER LENGTH 2M	52
	KT 2X4000AL PLUG-IN LENGTH	52	KTA4000ET42B	KT 4X4000AL FEEDER LENGTH	52
	KT 1X4000AL PLUG-IN LENGTH	52	KTA4000ET42C	KT 4X4000AL FEEDER LENGTH	52
	KT 3X4000AL PLUG-IN LENGTH	52	KTA4000ET420	KT 4X4000AL FEEDER LENGTH	52
	KT 5X4000AL PLUG-IN LENGTH 4M	52	KTA4000ET43E	KT 4X4000AL FEEDER LENGTH	52
KTA4000ED7403	KT 3X4000AL KH PLUG-IN LENGTH 2M	55	KTA4000ET43E	KT 4X4000ALT EEDER LENGTH	52
KTA4000EH340	KT 3X4000AL KH PLUG-IN LENGTH 4M	55	KTA4000ET440	KT 4X4000AL FEEDER LENGTH 4M	52
KTA4000EH420	KT 4X4000AL KH PLUG-IN LENGTH 2M	55	KTA4000ET51A	KT 5X4000AL FEEDER LENGTH	52
KTA4000EH440	KT 4X4000AL KH PLUG-IN LENGTH 4M	55	KTA4000ET51A	KT 5X4000AL FEEDER LENGTH 2M	52
KTA4000EH520	KT 5X4000AL KH PLUG-IN LENGTH 2M	55	KTA4000ET52B	KT 5X4000AL FEEDER LENGTH	52
KTA4000EH540	KT 5X4000AL KH PLUG-IN LENGTH 4M	55	KTA4000ET52C	KT 5X4000AL FEEDER LENGTH	52
KTA4000EL31	KT 3X4000AL FEED UNIT EL N1	94	KTA4000ET52D	KT 5X4000AL FEEDER LENGTH	52
KTA4000EL31	KT 3X4000AL FEED UNIT EL N2	94	KTA4000ET53E	KT 5X4000AL FEEDER LENGTH	52
KTA4000EL32	KT 3X4000AL FEED UNIT EL N3	96	KTA4000ET53E	KT 5X4000AL FEEDER LENGTH	52
KTA4000EL33	KT 3X4000AL FEED UNIT EL N4	96	KTA4000ET540	KT 5X4000AL FEEDER LENGTH 4M	52
KTA4000EL34	KT 3X4000AL FEED UNIT EL N5	97	KTA4000ET71A	KT 5X4000ALTEEDER LENGTH	52
KTA4000EL41	KT 4X4000AL FEED UNIT EL N1	94	KTA4000ET71A	KT 5X4000AL FEEDER LENGTH 2M	52
KTA4000EL41	KT 4X4000AL FEED UNIT EL N2	94	KTA4000ET72B	KT 5X4000ALTEEDER LENGTH 2W	52
KTA4000EL42	KT 4X4000AL FEED UNIT EL N2 KT 4X4000AL FEED UNIT EL N3	96	KTA4000ET72C	KT 5X4000AL FEEDER LENGTH	52
KTA4000EL43	KT 4X4000AL FEED UNIT EL N3 KT 4X4000AL FEED UNIT EL N4	96	KTA4000E172C	KT 5X4000AL FEEDER LENGTH	52
		96			52
KTA4000EL45 KTA4000EL51	KT 4X4000AL FEED UNIT EL N5 KT 5X4000AL FEED UNIT EL N1	94	KTA4000ET73E KTA4000ET73F	KT 5X4000AL FEEDER LENGTH KT 5X4000AL FEEDER LENGTH	52
KTA4000EL51	KT 5X4000AL FEED UNIT EL NT	94	KTA4000ET740	KT 5X4000AL FEEDER LENGTH 4M	52
KTA4000EL53 KTA4000EL54	KT 5X4000AL FEED UNIT EL N3 KT 5X4000AL FEED UNIT EL N4	96 96	KTA4000FC3A KTA4000FC3B	KT 3X4000AL EDGEWISE ELBOW KT 3X4000AL EDGEWISE ELBOW	74 74
	KT 5X4000AL FEED UNIT EL N4	97			74
KTA4000EL55 KTA4000EL71	KT 5X4000AL FEED UNIT EL N3	94	KTA4000FC3D KTA4000FC3E	KT 3X4000AL EDGEWISE ELBOW KT 3X4000AL EDGEWISE ELBOW	74
KTA4000EL71	KT 5X4000AL FEED UNIT EL N1	94	KTA4000FC3E	KT 4X4000AL EDGEWISE ELBOW	74
KTA4000EL72	KT 5X4000AL FEED UNIT EL N2	96	KTA4000FC4A	KT 4X4000AL EDGEWISE ELBOW	74
KTA4000EL73	KT 5X4000AL FEED UNIT EL N3	96	KTA4000FC4B	KT 4X4000AL EDGEWISE ELBOW	74
KTA4000EL74	KT 5X4000AL FEED UNIT EL N5	97	KTA4000FC4E	KT 4X4000AL EDGEWISE ELBOW	74
KTA4000EL73	KT 3X4000AL FEED UNIT ER N1	80	KTA4000FC5A	KT 5X4000AL EDGEWISE ELBOW	74
KTA4000ER31	KT 3X4000AL FEED UNIT ER N1	80	KTA4000FC5A	KT 5X4000AL EDGEWISE ELBOW	74
KTA4000ER32	KT 3X4000AL FEED UNIT ER N3	81	KTA4000FC5D	KT 5X4000AL EDGEWISE ELBOW	74
KTA4000ER33	KT 3X4000AL FEED UNIT ER N4	81	KTA4000FC5E	KT 5X4000AL EDGEWISE ELBOW	74
KTA4000ER34	KT 3X4000AL FEED UNIT ER N5	82	KTA4000FC3E	KT 5X4000AL EDGEWISE ELBOW	74
KTA4000ER35	KT 3X4000AL FEED UNIT ER N6	82	KTA4000FC7B	KT 5X4000AL EDGEWISE ELBOW	74
KTA4000ER30	KT 3X4000AL FEED UNIT ER N7	86	KTA4000FC7D	KT 5X4000AL EDGEWISE ELBOW	74
KTA4000ER37	KT 4X4000AL FEED UNIT ER N1	80	KTA4000FC7E	KT 5X4000AL EDGEWISE ELBOW	74
KTA4000ER41	KT 4X4000AL FEED UNIT ER N2	80	KTA4000FP3A1	KT 3X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ER42	KT 4X4000AL FEED UNIT ER N3	81	KTA4000FP3A2	KT 3X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ER43	KT 4X4000AL FEED UNIT ER N4	81	KTA4000FP3B1	KT 3X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ER45	KT 4X4000AL FEED UNIT ER N5	82	KTA4000FP3B2	KT 3X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ER46	KT 4X4000AL FEED UNIT ER N6	82	KTA4000FP3D1	KT 3X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ER47	KT 4X4000AL FEED UNIT ER N7	86	KTA4000FP3D2	KT 3X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ER47	KT 5X4000AL FEED UNIT ER N1	80	KTA4000FP3E1	KT 3X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ER52	KT 5X4000AL FEED UNIT ER N2	80	KTA4000FP3E2	KT 3X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ER52	KT 5X4000AL FEED UNIT ER N3	81	KTA4000FP4A1	KT 4X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ER55	KT 5X4000AL FEED UNIT ER N4	81	KTA4000FP4A2	KT 4X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ER55	KT 5X4000AL FEED UNIT ER N5	82	KTA4000FP4B1	KT 4X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ER56	KT 5X4000AL FEED UNIT ER N6	82	KTA4000FP4B2	KT 4X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ER57	KT 5X4000AL FEED UNIT ER N7	86	KTA4000FP4D1	KT 4X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ER71	KT 5X4000AL FEED UNIT ER N1	80	KTA4000FP4D2	KT 4X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ER72	KT 5X4000AL FEED UNIT ER N2	80	KTA4000FP4E1	KT 4X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ER73	KT 5X4000AL FEED UNIT ER N3	81	KTA4000FP4E2	KT 4X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ER74	KT 5X4000AL FEED UNIT ER N4	81	KTA4000FP5A1	KT 5X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ER75	KT 5X4000AL FEED UNIT ER N5	82	KTA4000FP5A2	KT 5X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ER76	KT 5X4000AL FEED UNIT ER N6	82	KTA4000FP5B1	KT 5X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ER77	KT 5X4000AL FEED UNIT ER N7	86	KTA4000FP5B2	KT 5X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ET31A	KT 3X4000AL FEEDER LENGTH	52	KTA4000FP5D1	KT 5X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ET320	KT 3X4000AL FEEDER LENGTH 2M	52	KTA4000FP5D2	KT 5X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ET32B	KT 3X4000AL FEEDER LENGTH	52	KTA4000FP5E1	KT 5X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ET32C	KT 3X4000AL FEEDER LENGTH	52	KTA4000FP5E2	KT 5X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ET33D	KT 3X4000AL FEEDER LENGTH	52	KTA4000FP7A1	KT 5X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ET33E	KT 3X4000AL FEEDER LENGTH	52	KTA4000FP7A2	KT 5X4000AL FLAT ELBOW N2 FIRE	73
KTA4000ET33E	KT 3X4000AL FEEDER LENGTH	52	KTA4000FP7B1	KT 5X4000AL FLAT ELBOW N1 FIRE	73
KTA4000ET331	KT 3X4000AL FEEDER LENGTH 4M	52	KTA4000FP7B2	KT 5X4000AL FLAT ELBOW N2 FIRE	73
	O. TOOONET EEDER EENOTH TIM	02	TITLICOUT I I DE	S. CIOOO IL I E. II LEDOW NZ I II L	, ,

at. no.	Designations	Pages	Cat. no.	Designations	Pages
TA4000FP7D1	KT 5X4000AL FLAT ELBOW N1 FIRE	73	KTA4000LP4D1	KT 4X4000AL FLAT ELBOW N1	62
TA4000FP7D2	KT 5X4000AL FLAT ELBOW N2 FIRE	73	KTA4000LP4D2	KT 4X4000AL FLAT ELBOW N2	62
TA4000FP7E1	KT 5X4000AL FLAT ELBOW N1 FIRE	73	KTA4000LP4E1	KT 4X4000AL FLAT ELBOW N1	62
TA4000FP7E2	KT 5X4000AL FLAT ELBOW N2 FIRE	73	KTA4000LP4E2	KT 4X4000AL FLAT ELBOW N2	62
TA4000FT31A	KT 3X4000AL FEEDER LENGTH FIRE	72	KTA4000LP5A1	KT 5X4000AL FLAT ELBOW N1	62
TA4000FT320	KT 3X4000AL FEEDER LENGTH FIRE 2M	72	KTA4000LP5A2	KT 5X4000AL FLAT ELBOW N2	62
TA4000FT32B	KT 3X4000AL FEEDER LENGTH FIRE	72	KTA4000LP5B1	KT 5X4000AL FLAT ELBOW N1	62
TA4000FT32C	KT 3X4000AL FEEDER LENGTH FIRE	72	KTA4000LP5B2	KT 5X4000AL FLAT ELBOW N2	62
TA4000FT33D	KT 3X4000AL FEEDER LENGTH FIRE	72	KTA4000LP5C1	KT 5X4000AL FLAT ELBOW N1	63
TA4000FT33E	KT 3X4000AL FEEDER LENGTH FIRE	72	KTA4000LP5C2	KT 5X4000AL FLAT ELBOW N2	63
TA4000FT33F	KT 3X4000AL FEEDER LENGTH FIRE	72	KTA4000LP5D1 KTA4000LP5D2	KT 5X4000AL FLAT ELBOW N1	62
TA4000FT340 TA4000FT41A	KT 3X4000AL FEEDER LENGTH FIRE 4M KT 4X4000AL FEEDER LENGTH FIRE	72 72	KTA4000LP5D2	KT 5X4000AL FLAT ELBOW N2 KT 5X4000AL FLAT ELBOW N1	62 62
TA4000FT41A	KT 4X4000AL FEEDER LENGTH FIRE 2M	72	KTA4000LP5E1	KT 5X4000AL FLAT ELBOW NT	62
TA4000FT42B	KT 4X4000AL FEEDER LENGTH FIRE	72	KTA4000LP7A1	KT 5X4000AL FLAT ELBOW N1	62
TA4000FT42C	KT 4X4000AL FEEDER LENGTH FIRE	72	KTA4000LP7A2	KT 5X4000AL FLAT ELBOW N2	62
TA4000FT43D	KT 4X4000AL FEEDER LENGTH FIRE	72	KTA4000LP7B1	KT 5X4000AL FLAT ELBOW N1	62
TA4000FT43E	KT 4X4000AL FEEDER LENGTH FIRE	72	KTA4000LP7B2	KT 5X4000AL FLAT ELBOW N2	62
TA4000FT43F	KT 4X4000AL FEEDER LENGTH FIRE	72	KTA4000LP7C1	KT 5X4000AL FLAT ELBOW N1	63
TA4000FT440	KT 4X4000AL FEEDER LENGTH FIRE 4M	72	KTA4000LP7C2	KT 5X4000AL FLAT ELBOW N2	63
TA4000FT51A	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000LP7D1	KT 5X4000AL FLAT ELBOW N1	62
A4000FT520	KT 5X4000AL FEEDER LENGTH FIRE 2M	72	KTA4000LP7D2	KT 5X4000AL FLAT ELBOW N2	62
TA4000FT52B	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000LP7E1	KT 5X4000AL FLAT ELBOW N1	62
TA4000FT52C	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000LP7E2	KT 5X4000AL FLAT ELBOW N2	62
TA4000FT53D	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000TC3	KT 3X4000AL TEE ON EDGE	67
TA4000FT53E	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000TC4	KT 4X4000AL TEE ON EDGE	67
TA4000FT53F	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000TC5	KT 5X4000AL TEE ON EDGE	67
ΓA4000FT540	KT 5X4000AL FEEDER LENGTH FIRE 4M	72	KTA4000TC7	KT 5X4000AL TEE ON EDGE	67
A4000FT71A	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000TN410	KT 4X4000AL NEUTRAL PERMUTA	58
A4000FT720	KT 5X4000AL FEEDER LENGTH FIRE 2M	72	KTA4000TN610	KT 4X4000AL NEUTRAL PERMUTA	58
A4000FT72B	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000TP410	KT 4X4000AL PHASES PERMUTA	58
TA4000FT72C	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000TP610	KT 4X4000AL PHASES PERMUTA	58
TA4000FT73D	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000YA3	KT 3X4000AL JUNCTION BLOC	60
ΓA4000FT73E	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000YA4	KT 4X4000AL JUNCTION BLOC	60
ΓA4000FT73F	KT 5X4000AL FEEDER LENGTH FIRE	72	KTA4000YA5	KT 5X4000AL JUNCTION BLOC	60
ΓA4000FT740	KT 5X4000AL FEEDER LENGTH FIRE 4M	72	KTA4000YA6	KT 4X4000AL JUNCTION BLOC	60
A4000LC3A	KT 3X4000AL EDGEWISE ELBOW	63	KTA4000YA7	KT 5X4000AL JUNCTION BLOC	60
TA4000LC3B	KT 3X4000AL EDGEWISE ELBOW	63	KTA4000ZC31	KT 3X4000AL EDGEWISE ZED N1	68
TA4000LC3D	KT 3X4000AL EDGEWISE ELBOW	63	KTA4000ZC32	KT 3X4000AL EDGEWISE ZED N2	68
TA4000LC3E	KT 3X4000AL EDGEWISE ELBOW	63	KTA4000ZC41	KT 4X4000AL EDGEWISE ZED N1	68
TA4000LC4A	KT 4X4000AL EDGEWISE ELBOW	63	KTA4000ZC42	KT 4X4000AL EDGEWISE ZED N2	68
TA4000LC4B	KT 4X4000AL EDGEWISE ELBOW	63	KTA4000ZC51	KT 5X4000AL EDGEWISE ZED N1	68
TA4000LC4D	KT 4X4000AL EDGEWISE ELBOW	63	KTA4000ZC52	KT 5X4000AL EDGEWISE ZED N2	68
TA4000LC4E	KT 4X4000AL EDGEWISE ELBOW	63	KTA4000ZC71	KT 5X4000AL EDGEWISE ZED N1	68
TA4000LC5A	KT 5X4000AL EDGEWISE ELBOW	63	KTA4000ZC72	KT 5X4000AL EDGEWISE ZED N2	68
TA4000LC5B	KT 5X4000AL EDGEWISE ELBOW	63	KTA4000ZP3	KT 3X4000AL ZED ON FLAT	68
TA4000LC5D	KT 5X4000AL EDGEWISE ELBOW	63	KTA4000ZP4	KT 4X4000AL ZED ON FLAT	68
TA4000LC5E	KT 5X4000AL EDGEWISE ELBOW	63	KTA4000ZP5	KT 5X4000AL ZED ON FLAT	68
TA4000LC7A	KT 5X4000AL EDGEWISE ELBOW	63	KTA4000ZP7	KT 5X4000AL ZED ON FLAT	68
TA4000LC7B	KT 5X4000AL EDGEWISE ELBOW	63	I/TA ECCO		
TA4000LC7D	KT 5X4000AL EDGEWISE ELBOW	63	KTA5000		
TA4000LC7E TA4000LP3A1	KT 5X4000AL EDGEWISE ELBOW KT 3X4000AL FLAT ELBOW N1	63 62	KTA5000CP31	KT 3X5000AL FLAT EDGEWISE N1	71
TA4000LP3A1		62	KTA5000CP32	KT 3X5000AL FLAT EDGEWISE N2	71
A4000LP3A2	KT 3X4000AL FLAT ELBOW N2 KT 3X4000AL FLAT ELBOW N1	62	KTA5000CP33	KT 3X5000AL FLAT EDGEWISE N3	71
A4000LP3B1	KT 3X4000AL FLAT ELBOW NT	62	KTA5000CP34	KT 3X5000AL FLAT EDGEWISE N4	71
A4000LP3B2	KT 3X4000AL FLAT ELBOW N2 KT 3X4000AL FLAT ELBOW N1	63	KTA5000CP41	KT 4X5000AL FLAT EDGEWISE N1	71
A4000LP3C1		63	KTA5000CP42	KT 4X5000AL FLAT EDGEWISE N2	71
A4000LP3C2		62	KTA5000CP43	KT 4X5000AL FLAT EDGEWISE NA	71
A4000LP3D1		62	KTA5000CP44	KT 4X5000AL FLAT EDGEWISE N4	71
A4000LP3E1	KT 3X4000AL FLAT ELBOW N1	62	KTA5000CP51	KT 5X5000AL FLAT EDGEWISE N1	71 71
A4000LP3E1	KT 3X4000AL FLAT ELBOW N2	62	KTA5000CP52	KT 5X5000AL FLAT EDGEWISE N2	71
TA4000LF 3L2		62	KTA5000CP53	KT 5X5000AL FLAT EDGEWISE NA	71
TA4000LP4A2		62	KTA5000CP54	KT 5X5000AL FLAT EDGEWISE N4	71
TA4000LP4B1	KT 4X4000AL FLAT ELBOW N1	62	KTA5000CP71	KT 5X5000AL FLAT EDGEWISE N1	71 71
		62	KTA5000CP72	KT 5X5000AL FLAT EDGEWISE N2	71
M4UUULF4D/			KTA5000CP73	KT 5X5000AL FLAT EDGEWISE N3	71
TA4000LP4B2 TA4000LP4C1	KT 4X4000AL FLAT ELBOW N1	63	KTA5000CP74	KT 5X5000AL FLAT EDGEWISE N4	71

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
KTA5000DB410	KT 4X5000AL EXPANSION UNIT	59	KTA5000ET43E	KT 4X5000AL FEEDER LENGTH	56
KTA5000DB410	KT 5X5000AL EXPANSION UNIT	59	KTA5000ET43E	KT 4X5000AL FEEDER LENGTH	56
KTA5000DB510	KT 5X5000AL EXPANSION UNIT	59	KTA5000ET440	KT 4X5000AL FEEDER LENGTH 4M	56
		57	KTA5000ET51A	KT 5X5000AL FEEDER LENGTH	56
KTA5000EB320	KT 3X5000AL BOLT ON LENGTH 2M		KTA5000ET51A		
KTA5000EB340	KT 3X5000AL BOLT ON LENGTH 4M	57		KT 5X5000AL FEEDER LENGTH 2M	56
KTA5000EB420	KT 4X5000AL BOLT ON LENGTH 2M	57 57	KTA5000ET52B KTA5000ET52C	KT 5X5000AL FEEDER LENGTH	56 56
KTA5000EB440	KT 4X5000AL BOLT ON LENGTH 4M			KT 5X5000AL FEEDER LENGTH	
KTA5000EB520	KT 5X5000AL BOLT ON LENGTH 2M	57	KTA5000ET53D	KT 5X5000AL FEEDER LENGTH	56
KTA5000EB540	KT 5X5000AL BOLT ON LENGTH 4M	57	KTA5000ET53E	KT 5X5000AL FEEDER LENGTH	56
KTA5000EB720	KT 5X5000AL BOLT ON LENGTH 2M	57	KTA5000ET53F	KT 5X5000AL FEEDER LENGTH	56
KTA5000EB740	KT 5X5000AL BOLT ON LENGTH 4M	57	KTA5000ET540	KT 5X5000AL FEEDER LENGTH 4M	56
	KT 3X5000AL PLUG-IN LENGTH 2M	56	KTA5000ET71A	KT 5X5000AL FEEDER LENGTH	56
	KT 3X5000AL PLUG-IN LENGTH 4M	56	KTA5000ET720	KT 5X5000AL FEEDER LENGTH 2M	56
	KT 4X5000AL PLUG-IN LENGTH 2M	56	KTA5000ET72B	KT 5X5000AL FEEDER LENGTH	56
	KT 4X5000AL PLUG-IN LENGTH 4M	56	KTA5000ET72C	KT 5X5000AL FEEDER LENGTH	56
	KT 5X5000AL PLUG-IN LENGTH 2M	56	KTA5000ET73D	KT 5X5000AL FEEDER LENGTH	56
	KT 5X5000AL PLUG-IN LENGTH 4M	56	KTA5000ET73E	KT 5X5000AL FEEDER LENGTH	56
	KT 5X5000AL PLUG-IN LENGTH 2M	56	KTA5000ET73F	KT 5X5000AL FEEDER LENGTH	56
	KT 5X5000AL PLUG-IN LENGTH 4M	56	KTA5000ET740	KT 5X5000AL FEEDER LENGTH 4M	56
KTA5000EL31	KT 3X5000AL FEED UNIT EL N1	95	KTA5000FC3A	KT 3X5000AL EDGEWISE ELBOW	74
KTA5000EL32	KT 3X5000AL FEED UNIT EL N2	95	KTA5000FC3B	KT 3X5000AL EDGEWISE ELBOW	74
KTA5000EL35	KT 3X5000AL FEED UNIT EL N5	95	KTA5000FC4A	KT 4X5000AL EDGEWISE ELBOW	74
KTA5000EL41	KT 4X5000AL FEED UNIT EL N1	95	KTA5000FC4B	KT 4X5000AL EDGEWISE ELBOW	74
KTA5000EL42	KT 4X5000AL FEED UNIT EL N2	95	KTA5000FC5A	KT 5X5000AL EDGEWISE ELBOW	74
KTA5000EL45	KT 4X5000AL FEED UNIT EL N5	95	KTA5000FC5B	KT 5X5000AL EDGEWISE ELBOW	74
KTA5000EL51	KT 5X5000AL FEED UNIT EL N1	95	KTA5000FC7A	KT 5X5000AL EDGEWISE ELBOW	74
KTA5000EL52	KT 5X5000AL FEED UNIT EL N2	95	KTA5000FC7B	KT 5X5000AL EDGEWISE ELBOW	74
KTA5000EL55	KT 5X5000AL FEED UNIT EL N5	97	KTA5000FP3A1	KT 3X5000AL FLAT ELBOW N1 FIRE	73
KTA5000EL71	KT 5X5000AL FEED UNIT EL NI	95	KTA5000FP3A2	KT 3X5000AL FLAT ELBOW N2 FIRE	73
KTA5000EL72	KT 5X5000AL FEED UNIT EL N2	95	KTA5000FP3B1	KT 3X5000AL FLAT ELBOW N1 FIRE	73
KTA5000EL75	KT 5X5000AL FEED UNIT EL N5	97	KTA5000FP3B2	KT 3X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ER31	KT 3X5000AL FEED UNIT ER N1	83	KTA5000FP3D1	KT 5X5000AL FLAT ELBOW N1 FIRE	73
KTA5000ER32	KT 3X5000AL FEED UNIT ER N2	83	KTA5000FP3D2	KT 3X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ER33	KT 3X5000AL FEED UNIT ER N3	84	KTA5000FP3E1	KT 5X5000AL FLAT ELBOW N1 FIRE	73
KTA5000ER34	KT 3X5000AL FEED UNIT ER N4	84	KTA5000FP3E2	KT 3X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ER35	KT 3X5000AL FEED UNIT ER N5	85	KTA5000FP4A1	KT 4X5000AL FLAT ELBOW N1 FIRE	73
KTA5000ER36	KT 3X5000AL FEED UNIT ER N6	85	KTA5000FP4A2	KT 4X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ER41	KT 4X5000AL FEED UNIT ER N1	83	KTA5000FP4B1 KTA5000FP4B2	KT 4X5000AL FLAT ELBOW N1 FIRE	73
KTA5000ER42	KT 4X5000AL FEED UNIT ER N2 KT 4X5000AL FEED UNIT ER N3	83		KT 4X5000AL FLAT ELBOW N2 FIRE KT 5X5000AL FLAT ELBOW N1 FIRE	73 73
KTA5000ER43		84	KTA5000FP4D1 KTA5000FP4D2		73
KTA5000ER44	KT 4X5000AL FEED UNIT ER N4	84		KT 4X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ER45 KTA5000ER46	KT 4X5000AL FEED UNIT ER N5 KT 4X5000AL FEED UNIT ER N6	85 85	KTA5000FP4E1 KTA5000FP4E2	KT 5X5000AL FLAT ELBOW N1 FIRE KT 4X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ER46	KT 5X5000AL FEED UNIT ER NO	83	KTA5000FP5A1	KT 5X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ER51	KT 5X5000AL FEED UNIT ER N2		KTA5000FP5A1	KT 5X5000AL FLAT ELBOW NT FIRE	
KTA5000ER52	KT 5X5000AL FEED UNIT ER N2	83 84	KTA5000FP5B1	KT 5X5000AL FLAT ELBOW N2 FIRE KT 5X5000AL FLAT ELBOW N1 FIRE	73 73
KTA5000ER55	KT 5X5000AL FEED UNIT ER N4	84	KTA5000FP5B1	KT 5X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ER55	KT 5X5000AL FEED UNIT ER N5	85	KTA5000FP5D1	KT 5X5000AL FLAT ELBOW N2 FIRE KT 5X5000AL FLAT ELBOW N1 FIRE	73
KTA5000ER55	KT 5X5000AL FEED UNIT ER N6	85	KTA5000FP5D1	KT 5X5000AL FLAT ELBOW NT FIRE	73
KTA5000ER50	KT 5X5000AL FEED UNIT ER N1	83	KTA5000FP5E1	KT 5X5000AL FLAT ELBOW N1 FIRE	73
KTA5000ER71	KT 5X5000AL FEED UNIT ER N2	83	KTA5000FP5E2	KT 5X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ER73	KT 5X5000AL FEED UNIT ER N3	84	KTA5000FP7A1	KT 5X5000AL FLAT ELBOW N1 FIRE	73
KTA5000ER73	KT 5X5000AL FEED UNIT ER N4	84	KTA5000FP7A1	KT 5X5000AL FLAT ELBOW NT FIRE	73
KTA5000ER74	KT 5X5000AL FEED UNIT ER N5	85	KTA5000FP7B1	KT 5X5000AL FLAT ELBOW N2 FIRE KT 5X5000AL FLAT ELBOW N1 FIRE	73
KTA5000ER76	KT 5X5000AL FEED UNIT ER N6	85	KTA5000FP7B1	KT 5X5000AL FLAT ELBOW NT FIRE KT 5X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ER76	KT 3X5000AL FEEDER LENGTH	56	KTA5000FP7D1	KT 5X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ET31A	KT 3X5000AL FEEDER LENGTH 2M	56	KTA5000FP7D1	KT 5X5000AL FLAT ELBOW NT FIRE KT 5X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ET32B	KT 3X5000AL FEEDER LENGTH	56	KTA5000FP7E1	KT 5X5000AL FLAT ELBOW N2 FIRE	73
KTA5000ET32B	KT 3X5000AL FEEDER LENGTH	56	KTA5000FP7E1	KT 5X5000AL FLAT ELBOW NT FIRE	73
KTA5000ET32C	KT 3X5000AL FEEDER LENGTH	56	KTA5000FF7E2	KT 3X5000AL FEEDER LENGTH FIRE	72
KTA5000ET33E	KT 3X5000AL FEEDER LENGTH	56	KTA5000FT320	KT 3X5000AL FEEDER LENGTH FIRE 2M	72
KTA5000ET33E	KT 3X5000AL FEEDER LENGTH	56	KTA5000FT32B	KT 3X5000AL FEEDER LENGTH FIRE 2M	72
KTA5000ET33F	KT 3X5000AL FEEDER LENGTH	56	KTA5000FT32B	KT 3X5000AL FEEDER LENGTH FIRE	72
KTA5000ET41A	KT 4X5000AL FEEDER LENGTH 4W	56	KTA5000FT32C	KT 3X5000AL FEEDER LENGTH FIRE	72
KTA5000ET41A	KT 4X5000AL FEEDER LENGTH KT 4X5000AL FEEDER LENGTH 2M	56	KTA5000FT33E	KT 3X5000AL FEEDER LENGTH FIRE	72
KTA5000ET42B	KT 4X5000AL FEEDER LENGTH ZW	56	KTA5000FT33E	KT 3X5000AL FEEDER LENGTH FIRE	72
				KT 3X5000AL FEEDER LENGTH FIRE 4M	72
KTA5000ET42C KTA5000ET43D	KT 4X5000AL FEEDER LENGTH KT 4X5000AL FEEDER LENGTH	56 56	KTA5000FT340 KTA5000FT41A	KT 4X5000AL FEEDER LENGTH FIRE 4M KT 4X5000AL FEEDER LENGTH FIRE	72
	IVI -VOUCOUNTI, EEDEL TEING I L	50	KIASUUUF 141A	IN TABUUUALI CEDER LENGITIFIKE	12

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
TA5000FT420	KT 4X5000AL FEEDER LENGTH FIRE 2M	72	KTA5000LP7B1	KT 5X5000AL FLAT ELBOW N1	64
TA5000FT42B	KT 4X5000AL FEEDER LENGTH FIRE	72	KTA5000LP7B2	KT 5X5000AL FLAT ELBOW N2	64
TA5000FT42C	KT 4X5000AL FEEDER LENGTH FIRE	72	KTA5000LP7C1	KT 5X5000AL FLAT ELBOW N1	64
TA5000FT43D	KT 4X5000AL FEEDER LENGTH FIRE	72	KTA5000LP7C2	KT 5X5000AL FLAT ELBOW N2	64
TA5000FT43E	KT 4X5000AL FEEDER LENGTH FIRE	72	KTA5000LP7D1	KT 5X5000AL FLAT ELBOW N1	64
TA5000FT43F	KT 4X5000AL FEEDER LENGTH FIRE	72	KTA5000LP7D2	KT 5X5000AL FLAT ELBOW N2	64
TA5000FT440	KT 4X5000AL FEEDER LENGTH FIRE 4M	72	KTA5000LP7E1	KT 5X5000AL FLAT ELBOW N1	64
TA5000FT51A	KT 5X5000AL FEEDER LENGTH FIRE	72	KTA5000LP7E2	KT 5X5000AL FLAT ELBOW N2	64
TA5000FT520	KT 5X5000AL FEEDER LENGTH FIRE 2M	72	KTA5000TN410	KT 4X5000AL NEUTRAL PERMUTA	59
TA5000FT52B	KT 5X5000AL FEEDER LENGTH FIRE	72	KTA5000TP410	KT 4X5000AL PHASES PERMUTA	59
TA5000FT52C	KT 5X5000AL FEEDER LENGTH FIRE KT 5X5000AL FEEDER LENGTH FIRE	72 72	KTA5000YA3	KT 3X5000AL JUNCTION BLOC KT 4X5000AL JUNCTION BLOC	60 60
TA5000FT53D	KT 5X5000AL FEEDER LENGTH FIRE	72	KTA5000YA4		60
TA5000FT53E TA5000FT53F	KT 5X5000AL FEEDER LENGTH FIRE	72	KTA5000YA5 KTA5000YA6	KT 5X5000AL JUNCTION BLOC KT 5X5000AL JUNCTION BLOC	60
TA5000FT53F	KT 5X5000AL FEEDER LENGTH FIRE 4M	72	KTA5000YA7	KT 5X5000AL JUNCTION BLOC	60
TA5000FT71A	KT 5X5000AL FEEDER LENGTH FIRE 4W	72	KTA5000TA7	KT 3X5000AL EDGEWISE ZED N1	69
TA5000FT71A	KT 5X5000AL FEEDER LENGTH FIRE 2M	72	KTA5000ZC31	KT 3X5000AL EDGEWISE ZED N2	69
TA5000FT72B	KT 5X5000AL FEEDER LENGTH FIRE	72	KTA5000ZC32	KT 4X5000AL EDGEWISE ZED N2	69
TA5000FT72B	KT 5X5000AL FEEDER LENGTH FIRE	72	KTA5000ZC41	KT 4X5000AL EDGEWISE ZED N2	69
TA5000FT73D	KT 5X5000AL FEEDER LENGTH FIRE	72	KTA5000ZC51	KT 5X5000AL EDGEWISE ZED N2	69
TA5000FT73E	KT 5X5000AL FEEDER LENGTH FIRE	72	KTA5000ZC52	KT 5X5000AL EDGEWISE ZED N2	69
TA5000FT73E	KT 5X5000AL FEEDER LENGTH FIRE	72	KTA5000ZC52	KT 5X5000AL EDGEWISE ZED N2	69
TA5000FT73F	KT 5X5000AL FEEDER LENGTH FIRE 4M	72	KTA5000ZC71	KT 5X5000AL EDGEWISE ZED N2	69
TA5000GS1	KT 5000AL GUIDE SUPPORT	61	KTA5000ZP3	KT 3X5000AL ZED ON FLAT	69
TA5000HC310	KT 3X5000AL H EDGEWISE	61	KTA5000ZP4	KT 4X5000AL ZED ON FLAT	69
TA5000HC410	KT 4X5000AL H EDGEWISE	61	KTA5000ZP5	KT 5X5000AL ZED ON FLAT	69
TA5000HC510	KT 5X5000AL H EDGEWISE	61	KTA5000ZP7	KT 5X5000AL ZED ON FLAT	69
TA5000HC710	KT 5X5000AL H EDGEWISE	61			
TA5000LC3A	KT 3X5000AL EDGEWISE ELBOW	65	KTB		
TA5000LC3B	KT 3X5000AL EDGEWISE ELBOW	65	KTB0000CR4	KT VERT COVER FEED EL N1 TO 4	99
TA5000LC4A	KT 4X5000AL EDGEWISE ELBOW	65	KTB0000CR4	KT HORI COVER FEED EL N1 TO 4	99
TA5000LC4B	KT 4X5000AL EDGEWISE ELBOW	65	KTB0000CR3	KT GLAND PLATE 5 X 24 TO 40	124, 14
TA5000LC5A	KT 5X5000AL EDGEWISE ELBOW	65	KTB0000GF01	KT GLAND PLATE 1 X 30 TO 70	124, 14
TA5000LC5B	KT 5X5000AL EDGEWISE ELBOW	65	KTB0000GP03	KT GLAND PLATE 2 X 30 TO 70	124, 14
TA5000LC7A	KT 5X5000AL EDGEWISE ELBOW	65	KTB0000SC1	KT FIRE BARRIER SEALANT	113
TA5000LC7B	KT 5X5000AL EDGEWISE ELBOW	65	KTB0000YB1	KT BOLT SNAP-OF HEAD	105
TA5000LP3A1	KT 3X5000AL FLAT ELBOW N1	64	KTB0000YB2	KT SCREWS M12X60 NUTS & PLATES	105
TA5000LP3A2	KT 3X5000AL FLAT ELBOW N2	64	KTB0000YB3	KT SCREWS M12X60 & TORQUE NUTS	105
TA5000LP3B1	KT 3X5000AL FLAT ELBOW N1	64	KTB0000YB4	KT SCREWS M12X80 & TORQUE NUTS	105
TA5000LP3B2	KT 3X5000AL FLAT ELBOW N2	64	KTB0000YB5	CANALIS KT SCREWS M10X60 & NUTS	105
TA5000LP3C1	KT 3X5000AL FLAT ELBOW N1	64	KTB0000YB6	CANALIS KT T BOLT	111
TA5000LP3C2	KT 3X5000AL FLAT ELBOW N2	64	KTB0000YE1	KT L PLATE 160	98
TA5000LP3D1	KT 5X5000AL FLAT ELBOW N1	64	KTB0000YE2	KT L PLATE 200	98
TA5000LP3D2	KT 3X5000AL FLAT ELBOW N2	64	KTB0000YF1	KT INSULATING SHEATH	105
TA5000LP3E1	KT 5X5000AL FLAT ELBOW N1	64	KTB0000YP11	CANALIS KT CONNECTION PLATE N1	106
TA5000LP3E2	KT 3X5000AL FLAT ELBOW N2	64	KTB0000YP12	CANALIS KT CONNECTION PLATE N2	106
TA5000LP4A1	KT 4X5000AL FLAT ELBOW N1	64	KTB0000YP13	CANALIS KT CONNECTION PLATE N3	106
TA5000LP4A2	KT 4X5000AL FLAT ELBOW N2	64	KTB0000YP14	CANALIS KT CONNECTION PLATE N4	106
TA5000LP4B1	KT 4X5000AL FLAT ELBOW N1	64	KTB0000YP21	KT CONNECTION PLATE HORI ER1 TO ER6	107
TA5000LP4B2	KT 4X5000AL FLAT ELBOW N2	64	KTB0000YP22	KT CONNECTION PLATE VERT ER1 TO ER6	107
TA5000LP4C1		64	KTB0000YP23	KT CONNECTION PLATE EL5	108
TA5000LP4C2		64	KTB0000YP24	KT CONNECTION PLATE EL1 TO EL2	108
TA5000LP4D1		64	KTB0000YS1	KT SUPPORT FOR BARS DBA115	106
TA5000LP4D2		64	KTB0000YS2	KT CLAMP 100	106
TA5000LP4E1	KT 5X5000AL FLAT ELBOW N1	64	KTB0000YS3	KT CLAMP 120	106
TA5000LP4E2	KT 4X5000AL FLAT ELBOW N2	64	KTB0000YT1	KT BRAID 600MM2 L400 8	104
TA5000LP5A1		64	KTB0000ZA1	KT HORI FIXING BRACKED	110
TA5000LP5A2		64	KTB0000ZA3	KT FIXING GRIP	110
A5000LP5B1		64	KTB0000ZA7	CANALIS KT FLAT WISE SUPPORT 3M	111
TA5000LP5B2		64	KTB0000ZA8	KT FLAT WISE FIXING GRIP	111
TA5000LP5C1		64	KTB0001CR5	KT VERT COVER FEED EL N1 TO N2	101
TA5000LP5C2		64	KTB0001CR6	KT HORI COVER FEED EL N1 TO N2	101
TA5000LP5D1		64	KTB0074CF6	KT FIRE BARRIER KIT H74 L650	113
TA5000LP5D2		64	KTB0074FA	KT END COVER H74	60
TA5000LP5E1	KT 5X5000AL FLAT ELBOW N1	64	KTB0074TT01	KT KT ROOF PLATE H74	79
TA5000LP5E2	KT 5X5000AL FLAT ELBOW N2	64	KTB0074ZA4	KT HORI TOP BRACKED H74	110
TA5000LP7A1	KT 5X5000AL FLAT ELBOW N1	64	KTB0100YC105B	CANALIS KT LINK CU STRAIGHT 100 X MTM $$	102
TA5000LP7A2	KT 5X5000AL FLAT ELBOW N2	64	KTD0400VC407A	CANALIS KT LINK BI STRAIGHT 100 X MTM	102

Cat. no.	Designations	Pages	Cat. no.	Designations	Pages
	CANALIS KT LINK CU WAVY 100 X MTM	102	KTB0350CR83	CANALIS KT VERT COVER FOR OIL	91
	CANALIS KT LINK BI WAVY 100 X MTM	102	KID0330CK03	TR Y350 N3	91
	CANALIS KT LINK BI WAY 1 100 X WITM CANALIS KT LINK CU INSULATED 100 X 600	102	KTB0350CS0	KT FLEXIBLE COVER Y350 E115	92
	CANALIS KT LINK CU INSULATED 100 X 1000		KTB0350HT01	KT CONNECTION KHF KGF Y350 N1	135
	CANALIS KT LINK BI INSULATED 100 X 1000	103	KTB0350HT02	KT CONNECTION KHF KGF Y350 N2	135
	CANALIS KT LINK BI INSULATED 100 X 1000	103	KTB0350HT12	KT CONNECTION KHF27/29 Y350	135
KTB0104CF6	KT FIRE BARRIER KIT H104 L650	113	KTB0404CF6	KT FIRE BARRIER KIT H404 L650	113
KTB0104FA	KT END COVER H104	60	KTB0404FA	KT END COVER H404	60
KTB0104TT01	KT KT ROOF PLATE H104	79	KTB0404PE1	KT END COVER H404	75, 78, 79
	CANALIS KT LINK CU STRAIGHT 120 X MTM	102	KTB0404TT01	KT KT ROOF PLATE H404	79
	CANALIS KT LINK BI STRAIGHT 120 X MTM	102	KTB0404ZA4	KT HORI TOP BRACKED H104 A 404	110
	CANALIS KT LINK CU WAVY 120 X MTM	102	KTB0404ZA51	CANALIS KT VERTICAL SUPPORT H404	112
	CANALIS KT LINK BI WAVY 120 X MTM	102	KTB0404ZA52	CANALIS KT WALL BRACKET H404	112
KTB0124CF6	KT FIRE BARRIER KIT H124 L650	113	KTB0404ZA7	CANALIS KT FLAT WISE SUPPORT H404	111
KTB0124FA	KT END COVER H124	60	KTB0510BC01	KT CABLES BOX Y510	92
KTB0124TT01	KT KT ROOF PLATE H124	79	KTB0510CR1	KT HORI COVER FEED ER Y510	88
KTB0124ZA7	CANALIS KT FLAT WISE SUPPORT H124	111	KTB0510CR2	KT HIGH VERT COVER FEED Y510	89
KTB0164CF6	KT FIRE BARRIER KIT H164 L650	113	KTB0510CR3	KT LOW VERT COVER FEED Y510	89
KTB0164FA	KT END COVER H164	60	KTB0510CR6	KT HORI COVER FEED EL N5 Y510	100
KTB0164PE1	KT END COVER H164	75, 76, 78,	KTB0510CR71	CANALIS KT HORI COVER FOR OIL	90
		79	WTD	TR Y510 N1	00
KTB0164TT01	KT KT ROOF PLATE H164	79	KTB0510CR72	CANALIS KT HORI COVER FOR OIL T R Y510 N2	90
KTB0164ZA51	CANALIS KT VERTICAL SUPPORT H74A164	112	KTB0510CR73	CANALIS KT HORI COVER FOR OIL	90
KTB0164ZA52	CANALIS KT WALL BRACKET H74A164	112	KIBUSIUCK/3	TR Y510 N3	90
KTB0204CF6	KT FIRE BARRIER KIT H204 L650	111	KTB0510CR81	CANALIS KT VERT COVER FOR OIL	91
KTB0204FA	KT END COVER H204	60		TR Y510 N1	
KTB0204TT01	KT KT ROOF PLATE H204	79	KTB0510CR82	CANALIS KT VERT COVER FOR OIL	91
KTB0204ZA51	CANALIS KT VERTICAL SUPPORT H204	112		TR Y510 N2	
KTB0204ZA52	CANALIS KT WALL BRACKET H204	112	KTB0510CS0	KT FLEXIBLE COVER Y510 E115	92
KTB0204ZA7	CANALIS KT FLAT WISE SUPPORT H204	111	KTB0510HT01	KT CONNECTION KHF KGF Y510 N1	135
KTB0230BC01	KT CABLES BOX Y230	92	KTB0510HT02	KT CONNECTION KHF KGF Y510 N2	135
KTB0230CR1	KT HORI COVER FEED ER Y230	88	KTB0510HT03	KT CONNECTION KHF KGF Y510 N3	135
KTB0230CR2	KT HIGH VERT COVER FEED Y230	89	KTB0510HT11	KT CONNECTION KHF37/39 Y510	135
KTB0230CR3	KT LOW VERT COVER FEED Y230	89	KTB0622CF7	KT FIRE BARRIER KIT H622 L750	113
KTB0230CR6	KT HORI COVER FEED EL N5 Y230	100	KTB0622FA	KT END COVER H622	60
KTB0230CR71	CANALIS KT HORI COVER FOR OIL TR Y230 N1	90	KTB0622ZA7	CANALIS KT FLAT WISE SUPPORT H622	111 127
KTB0230CR81	CANALIS KT VERT COVER FOR OIL T	91	KTB0630CB3 KTB0630CB4	KT FIXED TAP-OFF 3L PE NS630 KT FIXED TAP-OFF 3L N PE NS630	127
	R Y230 N1	•	KTB0630CB4	KT FIXED TAP-OFF 3L NFE NS630	127
KTB0230CS0	KT FLEXIBLE COVER Y230 E115	92	KTB0630CB3	KT PLUGIN 630A NSX 3L N	118
KTB0244CF6	KT FIRE BARRIER KIT H244 L650	113	KTB0630DC5	KT PLUGIN 630A NSX 3L PEN	118
KTB0244FA	KT END COVER H244	60	KTB0630HF3	KT COFF 3L PE FUS SWITCH 630	128
KTB0244PE1	KT END COVER H244	75, 78, 79	KTB0630HF4	KT COFF 3L N PE FUS SWITCH 630	128
KTB0244TT01	KT KT ROOF PLATE H244	79	KTB0630HF5	KT COFF 3L PEN FUS SWITCH 630	128
KTB0244ZA51	CANALIS KT VERTICAL SUPPORT H244	112	KTB0630SD4	KT PLUGIN 630A FUS 3LN	123
KTB0244ZA52	CANALIS KT WALL BRACKET H244	112	KTB0630SD5	KT PLUGIN 630A FUS 3LPEN	123
KTB0244ZA7	CANALIS KT FLAT WISE SUPPORT H244	111	KTB0630SE4L	KT PLUGIN 630A FUS 3LN ADV L	124
KTB0324CF6	KT FIRE BARRIER KIT H324 L650	113	KTB0630SE4R	KT PLUGIN 630A FUS 3LN ADV R	124
KTB0324FA	KT END COVER H324	60	KTB0630SE5L	KT PLUGIN 630A FUS 3LPEN ADV L	124
KTB0324TT01	KT KT ROOF PLATE H324	79	KTB0630SE5R	KT PLUGIN 630A FUS 3LPEN ADV R	124
KTB0324ZA51	CANALIS KT VERTICAL SUPPORT H324	112	KTB0630ZA01	KT CONNECTION BARS KIT 630 NSX	118
KTB0324ZA52	CANALIS KT WALL BRACKET H324	112	KTB0630ZA02	KT CONNECTION BARS KIT 630 FUSE	123
KTB0324ZA7	CANALIS KT FLAT WISE SUPPORT H324 KT CABLES BOX Y350	111 92	KTB0630ZA03	KT ROTARY HANDLE FOR FUSES	123, 124,
KTB0350BC01 KTB0350CR1	KT HORI COVER FEED ER Y350	92 88		(/T.00\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	141
KTB0350CR1	KT HIGH VERT COVER FEED Y350	89	KTB0630ZA04	KT CONNECTING BOX	118, 123, 124, 141
KTB0350CR2	KT LOW VERT COVER FEED 1350	89	KTB0726CR1	KT HORI COVER FEED ER Y726	88
KTB0350CR3	KT HORI COVER FEED EL N5 Y350	100	KTB0726CR1	KT LOW VERT COVER FEED Y726	89
KTB0350CR0	CANALIS KT HORI COVER FOR OIL	90	KTB0726CR3	KT HORI COVER FEED ER Y726	90
5000001(71	TR Y350 N1	30	KTB0726CR71	KT LOW VERT COVER FEED Y726	91
KTB0350CR72	CANALIS KT HORI COVER FOR OIL	90	KTB1000CB3	KT FIXED TAP-OFF 3L PE NS1000	127
	TR Y350 N2		KTB1000CB3	KT FIXED TAP-OFF 3L N PE NS1000	127
KTB0350CR73	CANALIS KT HORI COVER FOR OIL	90	KTB1000CB5	KT FIXED TAP-OFF 3L PEN NS1000	127
LATER COLORS	TR Y350 N3	00	KTB1000HF3	KT COFF 3L PE FUS SWITCH 1000	128
KTB0350CR74	CANALIS KT HORI COVER FOR OIL TR Y350 N4	90	KTB1000HF4	KT COFF 3L N PE FUS SWITCH 1000	128
KTB0350CR81	CANALIS KT VERT COVER FOR OIL	91	KTB1000HF5	KT COFF 3L PEN FUS SWITCH 1000	128
.11503300R01	TR Y350 N1		KTB1250CB3	KT COFF BOULO 3L PE NS 1250	127
KTB0350CR82	CANALIS KT VERT COVER FOR OIL	91	KTB1250CB4	KT COFF BOULO 3L N PE NS 1250	127
	TR Y350 N2		KTB1250CB5	KT COFF BOULO 3L PEN NS 1250	127
				T _	
				Life Is (b)n Schnei	der ၁၀၁

Learn more about Canalis KT online

Schneider Electric Industries SAS

CS 30323
92506 Rueil Malmaison Cedex
France

RCS Nanterre 954 503 439 Capital social 896 313 776 € www.se.com

01-2020 DEBU021EN

© 2020 - Schneider Electric. All Rights Reserved. All trademarks are owned by Schneider Electric Industries SAS or its affiliated companies. ART960132

This document has been printed on recycled paper

